Influence of Liquid-Liquid Phase Separation on the Crystallization of L-Menthol from Water
Ian de Albuquerque
ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Marco Mazzotti
ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich, Switzerland
Correspondence: Marco Mazzotti ([email protected]), ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich Switzerland.Search for more papers by this authorIan de Albuquerque
ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Marco Mazzotti
ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich, Switzerland
Correspondence: Marco Mazzotti ([email protected]), ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, 8092 Zurich Switzerland.Search for more papers by this authorAbstract
The crystallization of L-menthol in water was investigated, with the intent of understanding the effect that liquid-liquid phase separation (LLPS) has on the properties of product crystals. First, the binary phase diagram was measured, comprising both solid-liquid and liquid-liquid equilibrium regions. Calibration for the online monitoring of solid and liquid-liquid suspension densities was performed using Raman spectroscopy, thus enabling the detection of LLPS and crystallization. Crystallization was monitored online also by Raman spectroscopy. Offline characterization was performed using differential scanning calorimetry, powder X-ray diffraction, and Karl-Fisher. Crystallization followed by LLPS led to the formation of the most stable polymorphic form, yet those solids contained solvent inclusions. The initial amount of inclusions proved to be a function of operating conditions, namely cooling rate and suspension density.
References
- 1 C. A. Lipinski, J. Pharmacol. Toxicol. Methods 2001, 44 (1), 235–249. DOI: 10.1016/S1056-8719(00)00107-6
- 2 D. Duffy, N. Cremin, M. Napier, S. Robinson, M. Barrett, H. Hao, B. Glennon, Chem. Eng. Sci. 2012, 77, 112–121. DOI: 10.1016/j.ces.2012.01.047
- 3 H. Zhao, C. Xie, Z. Xu, Y. Wang, L. Bian, Z. Chen, H. Hao, Ind. Eng. Chem. Res. 2012, 51 (45), 14646–14652. DOI: 10.1021/ie302360u
- 4 L. Lafferrère, C. Hoff, S. Veesler, J. Cryst. Growth 2004, 269, 550–557. DOI: 10.1016/j.jcrysgro.2004.05.048
- 5 L. Lafferrère, C. Hoff, S. Veesler, Cryst. Growth Des. 2004, 4 (6), 1175–1180. DOI: 10.1021/cg0497750
- 6 K. Kiesow, F. Tumakaka, G. Sadowski, J. Cryst. Growth 2008, 310 (18), 4163–4168. DOI: 10.1016/j.jcrysgro.2008.06.034
- 7 H. Yang, A. C. Rasmuson, Org. Process Res. Dev. 2012, 16, 1212–1224.
- 8 J. Lu, Y. Li, J. Wang, Z. Li, S. Rohani, C. Ching, Org. Process Res. Dev. 2012, 16 (3), 442–446. DOI: 10.1021/op200339a
- 9 Y. Du, H. Wang, S. Du, Y. Wang, C. Huang, Y. Qin, J. Gong, Fluid Phase Equilib. 2016, 409 (15), 84–91. DOI: 10.1016/j.fluid.2015.09.011
- 10 S. Veesler, E. Revalor, O. Bottini, C. Hoff, Org. Process Res. Dev. 2006, 10 (4), 841–845. DOI: 10.1021/op060085+
- 11 M. Takasuga, H. Ooshima, Cryst. Growth Des. 2014, 14 (11), 6006–6011. DOI: 10.1021/cg5011874
- 12 M. Takasuga, H. Ooshima, Cryst. Growth Des. 2015, 15 (12), 5834–5838. DOI: 10.1021/acs.cgd.5b01192
- 13 I. de Albuquerque, M. Mazzotti, Cryst. Growth Des. 2014, 14 (11), 5617–5625. DOI: 10.1021/cg500904v
- 14 L. Codan, M. U. Bäbler, M. Mazzotti, Cryst. Growth Des. 2010, 10 (9), 4005–4013. DOI: 10.1021/cg100605t
- 15 L. Codan, S. Casillo, M. U. Bäbler, M. Mazzotti, Cryst. Growth Des. 2012, 12 (11), 5298–5310. DOI: 10.1021/cg300890u
- 16
R. Eccles, D. H. Griffiths, C. G. Newton, N. S. Tolley, J. Laryngol. Otol.
1998, 13 (1), 25–29. DOI: 10.1111/j.1365-2273.1988.tb00277.x
10.1111/j.1365‐2273.1988.tb00277.x Google Scholar
- 17 F. E. Wright, Am. Chem. J. 1917, 39 (8), 1515–1524. DOI: 10.1021/ja02253a001
- 18 J. E. Parkin, J. Chromatogr. 1984, 303, 436–439. DOI: 10.1016/S0021-9673(01)96106-0
- 19 K. A. Shaikh, S. D. Patil, J. Pharm. Bioallied Sci. 2010, 2 (4), 360–364. DOI: 10.4103/0975-7406.72141
- 20 Z. K. Nagy, G. Fevotte, H. Kramer, L. L. Simon, Chem. Eng. Res. Des. 2013, 91 (10), 1903–1922. DOI: 10.1016/j.cherd.2013.07.018
- 21 J. Cornel, C. Lindenberg, M. Mazzotti, Ind. Eng. Chem. Res. 2008, 47 (14), 4870–4882.
- 22 R. Zelkó, G. Szakonyi, Int. J. Pharm. Investig. 2012, 2 (1), 18–25. DOI: 10.4103/2230-973X.96922
- 23 L. Goh, K. Chen, V. Bhamidi, G. He, N. C. S. Kee, P. J. A. Kenis, C. F. Zukoski, R. D. Braatz, Cryst. Growth Des. 2010, 10 (6), 2515–2521. DOI: 10.1021/cg900830y
- 24 W. K. Ng, J. W. Kwek, A. Yuen, C. L. Tan, R. Tan, AAPS Pharm. Sci. Tech. 2010, 11 (1), 159–167. DOI: 10.1208/s12249-009-9372-5
- 25 G. G. Z. Zhang, D. J. W. Grant, Cryst. Growth Des. 2005, 5 (1), 319–324. DOI: 10.1021/cg049868h
- 26
S. Petit, G. Coquerel, JEEP 35th Conf. Phase Equilibria
2009, 1–4. DOI: 10.1051/jeep/200900016
10.1051/jeep/200900016 Google Scholar
- 27 H. G. Brittain, J. Pharm. Sci. 2002, 91 (7), 573–1580. DOI: 10.1002/jps.10115
- 28 V. Andronis, M. Yoshioka, G. Zografi, J. Pharm. Sci 1997, 86 (3), 346–357. DOI: 10.1021/js9602711
- 29 C. Lindenberg, M. Krattli, J. Cornel, M. Mazzotti, Cryst. Growth Des. 2009, 9 (2), 1124–1136. DOI: 10.1021/cg800934h
- 30 J. Cornel, C. Lindenberg, M. Mazzotti, Cryst. Growth Des. 2009, 9 (1), 243–252. DOI: 10.1021/cg800387a
- 31 I. de Albuquerque, D. R. Ochsenbein, M. Morari, M. Mazzotti, AIChE J. 2016, 62 (9), 2974–2985. DOI: 10.1002/aic.15270
- 32 J. Cornel, P. Kidambi, M. Mazzotti, Ind. Eng. Chem. Res. 2010, 49 (12), 5854–5862. DOI: 10.1021/ie9019616
- 33 C. Lindenberg, L. Vicum, M. Mazzotti, Cryst. Growth Des. 2008, 8 (1), 224–237. DOI: 10.1021/cg070161f
- 34 N. Saito, M. Yokota, T. Fujiwara, N. Kubota, Chem. Eng. J. 2001, 84 (3), 573–575. DOI: 10.1016/S1385-8947(01)00155-3
- 35 K. J. Valentas, N. R. Amundson, Ind. Eng. Chem. Fundam. 1966, 5 (4), 533–542. DOI: 10.1021/i160020a018
- 36 A. N. Saleemi, G. Steele, N. I. Pedge, A. Freeman, Z. K. Nagy, Int. J. Pharm. 2012, 430 (1), 56–64. DOI: 10.1016/j.ijpharm.2012.03.029
- 37 D.-Y. Kim, K.-J. Kim, H.-S. Kim, Propellants Explos. Pyrotech. 2010, 35 (1), 38–45. DOI: 10.1002/prep.200800116
- 38 R. M. Hodge, G. H. Edward, G. P. Simon, Polymer (Guildf). 1996, 37 (8), 1371–1376. DOI: 10.1016/0032-3861(96)81134-7
- 39 W. G. Liu, K. D. Yao, Polymer (Guildf). 2001, 42 (8), 3943–3947. DOI: 10.1016/S0032-3861(00)00726-6
- 40 T. Maeda, K. Yamamoto, T. Aoyagi, J. Colloid Interface Sci. 2006, 302 (2), 467–474. DOI: 10.1016/j.jcis.2006.06.047
- 41 S. Garnier, S. Petit, F. Mallet, M. N. Petit, D. Lemarchand, S. Coste, J. Lefebvre, G. Coquerel, Int. J. Pharm. 2008, 361 (1), 131–140. DOI: 10.1016/j.ijpharm.2008.05.023
- 42 E. Bobo, B. Lefez, M.-C. Caumon, S. Petit, G. Coquerel, CrystEngComm 2016, 18 (28), 5287–5295. DOI: 10.1039/C6CE00956E
- 43 N. Couvrat, A. S. Blier, B. Berton, Y. Cartigny, V. Dupray, G. Coquerel, Cryst. Growth Des. 2009, 9 (6), 2719–2724. DOI: 10.1021/cg801355q
- 44 A. Waldschmidt, V. Dupray, B. Berton, N. Couvrat, S. Petit, G. Coquerel, J. Cryst. Growth 2012, 342 (1), 72–79. DOI: 10.1016/j.jcrysgro.2011.02.047
- 45 A. Waldschmidt, I. Rietveld, N. Couvrat, V. Dupray, M. Sanselme, B. Berton, B. Nicolai, N. Mahé, S. Petit, R. Céolin, G. Coquerel, Cryst. Growth Des. 2011, 11 (6), 2580–2587. DOI: 10.1021/cg200331n