Industrial Process Design for the Production of Aniline by Direct Amination
Corresponding Author
Rick T. Driessen
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Correspondence: Rick T. Driessen ([email protected]), University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands.Search for more papers by this authorPeter Kamphuis
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorLydwien Mathijssen
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorRuo Zhang
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorLouis G. J. van der Ham
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorHenk van den Berg
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorArend Jan Zeeuw
Huntsman Belgium BVBA, Everslaan 45, 3078 Kortenberg, Belgium
Search for more papers by this authorCorresponding Author
Rick T. Driessen
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Correspondence: Rick T. Driessen ([email protected]), University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands.Search for more papers by this authorPeter Kamphuis
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorLydwien Mathijssen
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorRuo Zhang
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorLouis G. J. van der Ham
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorHenk van den Berg
University of Twente, Sustainable Process Technology, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, Netherlands
Search for more papers by this authorArend Jan Zeeuw
Huntsman Belgium BVBA, Everslaan 45, 3078 Kortenberg, Belgium
Search for more papers by this authorAbstract
The objective is to design a plant from raw material to product for the production of aniline by direct amination of benzene. The process design is started on a conceptual level and ended on a basic engineering level as well as a techno-economical evaluation. The amination of benzene by hydroxylamine was used as basis. For the production of hydroxylamine four routes are proposed. The most promising route is the chemical reduction of nitric oxide with hydrogen. The process evaluation shows that 27 % of the atomic nitrogen is lost. The atomic carbon efficiency is close to unity. Furthermore, a significant amount of steam can be produced. From an economical perspective, there is still room for improvement because the return of investment is quite low and the payback period is quite high.
References
- 1www.transparencymarketresearch.com/aniline-market.html (Accessed on February 11, 2015)
- 2
T. Kahl, K. W. Schröder, F. R. Lawrence, W. J. Marshall, H. Höke, R. Jäckh, Aniline, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim
2000.
10.1002/14356007.a02_303 Google Scholar
- 3 J. M. Douglas, Conceptual Design of Chemical Processes, 1st ed., McGraw-Hill, New York 1988.
- 4 H. van den Berg, A. J. Zeeuw, M. J. A. Dielwart, S. A. L. de Koster, S. A. G. Lawant, K. Tang, 21th Int. Congr. of Chemical and Process Engineering CHISA, Prague, August 2014.
- 5 Y. F. Lü, L. F. Zhu, Q. Y. Liu, B. Guo, X. K. Hu, C. W. Hu, Chin. Chem. Lett. 2009, 20 (2), 238–240. DOI: 10.1016/j.cclet.2008.11.005
- 6 J. Becker, W. F. Hölderich, Catal. Lett. 1998, 54 (3), 125–128. DOI: 10.1023/A:1019048526516
- 7 T. Yu, R. Yang, S. Xia, G. Li, C. Hu, Catal. Sci. Technol. 2014, 4 (9), 3159–3167. DOI: 10.1039/C4CY00432A.
- 8
B. Y. Waldo, L. Semon, J. Am. Chem. Soc.
1923, 45 (1), 188–190. DOI: 10.1021/ja01654a028.
10.1021/ja01654a028 Google Scholar
- 9 U. Müller, D. Heineke (BASF Aktiengesellschaft), US Patent , 1998. 5 777 163
- 10 W. Lewdorowicz, W. Tokarz, P. Piela, P. K. Wrona, J. New Mater. Electrochem. Syst. 2006, 9 (4), 339–343.
- 11 S. H. Langer, Platinum Met. Rev. 1992, 36 (4), 202–213.
- 12 S. Polizzi, A. Benedetti, G. Fagherazzi, C. Goatin, R. Strozzi, G. Talamini, J. Catal. 1987, 106 (2), 494–499. DOI: 10.1016/0021-9517(87)90262-4
- 13 R. E. Benson, T. L. Cairns, G. M. Whitman, J. Am. Chem. Soc. 1956, 78 (17), 4202–4205. DOI: 10.1021/ja01598a005
- 14
M. Halmann, J. Tobin, K. Zuckerman, J. Electroanal. Chem. Interfacial Electrochem.
1982, 209 (2), 249–253. DOI: 10.1016/0022-0728(86)80567-8
10.1016/0022‐0728(86)80567‐8 Google Scholar
- 15 T. Hara, Y. Nakamura, J. Nishimura, Appl. Catal., A 2007, 320, 144–151. DOI: 10.1016/j.apcata.2007.01.028
- 16
M. Thiemann, E. Scheibler, K. W. Wiegand, Nitric Acid, Nitrous Acid, and Nitrogen Oxides, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim
2000.
10.1002/14356007.a17_293 Google Scholar
- 17 L. O. Cisneros, W. J. Rogers, M. S. Mannan, Thermochim. Acta 2004, 414 (2), 177–183. DOI: 10.1016/j.tca.2003.09.023
- 18 B. U. Choi, D. K. Choi, Y. W. Lee, B. K. Lee, S. H. Kim, J. Chem. Eng. Data 2003, 48 (3), 603–607. DOI: 10.1021/je020161d
- 19 L. C. Yang, T. D. Vo, H. H. Burris, Cryogenics 1982, 22 (12), 625–634. DOI: 10.1016/0011-2275(82)90068-6
- 20 M. Mofarahi, M. Seyyedi, J. Chem. Eng. Data 2009, 54 (3), 916–921. DOI: 10.1021/je8006919
- 21 K. M. Parida, S. S. Dash, S. Singha, Appl. Catal., A 2008, 351 (1), 59–67. DOI: 10.1016/j.apcata.2008.08.027
- 22 M. I. Temkin, in Advances in Catalysis (Eds: D. D. Eley, H. Pines, P. B. Weisz), Vol. 28, Academic Press, New York 1979, 279–291.
- 23 R. Krishna, S. T. Sie, Chem. Eng. Sci. 1994, 49 (24), 4029–4065. DOI: 10.1016/S0009-2509(05)80005-3
- 24 G. P. van der Laan, A. A. C. M. Beenackers, R. Krishna, Chem. Eng. Sci. 1999, 54 (21), 5013–5019. DOI: 10.1016/S0009-2509(99)00225-0
- 25 W. Y. Svrcek, W. D. Monnery, Chem. Eng. Prog. 1993, 89 (10), 53–60.
- 26 W. D. Monnery, W. Y. Svrcek, Chem. Eng. Prog. 1994, 90 (9), 29–40.
- 27Hydrogen Recovery by Pressure Swing Adsorption (brochure), Linde AG, Pullach 2010.
- 28 R. K. Sinnott, G. Towler, Chemical Engineering Design, 5th ed., Butterworth-Heinemann, Oxford 2008.
- 29 W. D. Seider, J. D. Seader, D. R. Lewin, Product & Process Design Principles, 2nd ed., John Wiley & Sons, New York 2003.