Detection of Microscale Mass-Transport Regimes in Supercritical Fluid Extraction
Corresponding Author
Arthur A. Salamatin
Kazan Federal University, Department of Aerohydromechanics, Kremlyovskaya Str. 18, 420008 Kazan, Russia
Correspondence: Arthur A. Salamatin ([email protected]), Kazan Federal University, Department of Aerohydromechanics, Kremlyovskaya Str. 18, Kazan, 420008, Russia.Search for more papers by this authorCorresponding Author
Arthur A. Salamatin
Kazan Federal University, Department of Aerohydromechanics, Kremlyovskaya Str. 18, 420008 Kazan, Russia
Correspondence: Arthur A. Salamatin ([email protected]), Kazan Federal University, Department of Aerohydromechanics, Kremlyovskaya Str. 18, Kazan, 420008, Russia.Search for more papers by this authorAbstract
The problem of detecting supercritical fluid extraction regimes on the particle-scale level is discussed by using a generalized multiparameter model, which includes the shrinking-core (SC) and broken-and-intact-cells (BIC) approaches as its limiting cases. The model accounts for two internal mass-transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle-scale extraction regimes, described by the model, agree with available up-to-date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass-transfer mechanisms.
References
- 1 Green Chemistry: Theory and Practice (Eds: P. T. Anastas, J. C. Warner), Oxford University Press, Oxford 1998.
- 2 G. Brunner, Annu. Rev. Chem. Biomol. Eng. 2010, 1, 321–342. DOI: 10.1146/annurev-chembioeng-073009-101311
- 3 E. Schutz, Chem. Eng. Technol. 2007, 30 (6), 685–688. DOI: 10.1002/ceat.200600297
- 4 J. M. del Valle, J. Supercrit. Fluids 2015, 96, 180–199. DOI: 10.1016/j.supflu.2014.10.001
- 5 M. Bravi, R. Bubbico, F. Manna, N. Verdone, Chem. Eng. Sci. 2002, 57 (14), 2753–2764. DOI: 10.1016/S0009-2509(02)00145-8
- 6 L. Fiori, Chem. Eng. Process 2010, 49 (8), 866–872. DOI: 10.1016/j.cep.2010.06.001
- 7 A. A. Salamatin, A. G. Egorov, J. Supercrit. Fluids 2015, 105, 35–43. DOI: 10.1016/j.supflu.2015.01.013
- 8
A. G. Egorov, A. A. Salamatin, Russ. Math.
2015, 59 (2), 48–56. DOI: 10.3103/S1066369X15020073
10.3103/S1066369X15020073 Google Scholar
- 9 L. Fiori, D. Calcagno, P. Costa, J. Supercrit. Fluids 2007, 41 (1), 31–42. DOI: 10.1016/j.supflu.2006.09.005
- 10 X. Han, L. Cheng, R. Zhang, J. Bi, J. Food Eng. 2009, 92, 370–376. DOI: 10.1016/j.jfoodeng.2008.12.002
- 11 M. Goto, B. C. Roy, T. Hirose, J. Supercrit. Fluids 1996, 9 (2), 128–133. DOI: 10.1016/S0896-8446(96)90009-1
- 12 A. G. Egorov, A. A. Salamatin, Chem. Eng. Technol. 2015, 38 (7), 1203–1211. DOI: 10.1002/ceat.201400627
- 13 H. Sovova, Chem. Eng. Sci. 1994, 49 (3), 409–414. DOI: 10.1016/0009-2509(94)87012-8
- 14 H. Sovova, J. Supercrit. Fluids 2012, 66, 73–79. DOI: 10.1016/j.supflu.2011.11.004
- 15 L. Fiori, D. Basso, P. Costa, J. Supercrit. Fluids 2009, 48 (2), 131–138. DOI: 10.1016/j.supflu.2008.09.019
- 16 C. Marrone, M. Poletto, E. Reverchon, A. Stassi, Chem. Eng. Sci. 1998, 53 (21), 3711–3718. DOI: 10.1016/S0009-2509(98)00150-X
- 17 E. L. G. Oliveira, A. J. D. Silvestre, C. M. Silva, Chem. Eng. Res. Des. 2011, 89 (7), 1104–1117. DOI: 10.1016/j.cherd.2010.10.025
- 18 Z. Zekovic, S. Filip, S. Vidovic, S. Jokic, S. Svilovic, Chem. Eng. Technol. 2014, 37 (12), 2123–2128. DOI: 10.1002/ceat.201400322
- 19 A. Rai, K. D. Punase, B. Mohanty, R. Bhargava, Int. J. Heat Mass Transfer 2014, 72, 274–287. DOI: 10.1016/j.ijheatmasstransfer.2014.01.011
- 20 V. Abrahamsson, N. Andersson, B. Nilsson, C. Turner, J. Supercrit. Fluids 2016, 111, 14–27. DOI: 10.1016/j.supflu.2016.01.006
- 21 M. Poletto, E. Reverchon, Ind. Eng. Chem. Res. 1996, 35 (10), 3680–3686. DOI: 10.1021/ie9600093
- 22 A. K. K. Lee, N. R. Bulley, M. Fattori, A. Meisen, J. Am. Oil Chem. Soc. 1986, 63 (7), 921–925. DOI: 10.1007/BF02540928
- 23 J. M. del Valle, P. Napolitano, N. Fuentes, Ind. Eng. Chem. Res. 2000, 39, 4720–4728. DOI: 10.1021/ie000034f
- 24 E. F. Moura, M. C. Ventrella, S. Y. Motoike, Sci. Agric. 2010, 67 (4), 399–407. DOI: 10.1590/S0103-90162010000400004
- 25 D. M. Joel, H. Bar, A. M. Mayer, D. Plakhine, H. Ziadne, J. H. Westwood, G. E. Welbaum, Ann. Bot. 2012, 109 (1), 181–195. DOI: 10.1093/aob/mcr261
- 26 A. Femenia, M. Garcia-Marin, S. Simal, C. Rossello, M. Blasco, J. Agric. Food Chem. 2001, 49 (12), 5828–5834. DOI: 10.1021/jf010532e
- 27 A. Lehner, F. Corbineau, C. Bailly, Plant Cell Physiol. 2006, 47 (7), 818–828. DOI: 10.1093/pcp/pcj053
- 28 B. Honarvar, S. A. Sajadian, M. Khorram, A. Samimi, Braz. J. Chem. Eng. 2013, 30 (1), 159–166. DOI: 10.1590/S0104-66322013000100018
- 29 Y. Liu, Y. Zhao, J. Zhao, Y. Song, Magn. Reson. Imaging 2010, 29 (8), 1110–1118. DOI: 10.1016/j.mri.2011.05.009
- 30 A. G. Egorov, A. A. Salamatin, R. N. Maksudov, Theor. Found. Chem. Eng. 2014, 48 (1), 39–47. DOI: 10.1134/S0040579514010011
- 31
A. A. Salamatin, IOP Conf. Ser.: Mater. Sci. Eng.
2016, 158, 012081. DOI: 10.1088/1757-899X/158/1/012081
10.1088/1757‐899X/158/1/012081 Google Scholar
- 32 U. Salgin, H. Korkmaz, J. Supercrit. Fluids 2011, 58 (2), 239–248. DOI: 10.1016/j.supflu.2011.06.002
- 33 S. G. Ozkal, M. E. Yener, L. Bayindirli, J. Supercrit. Fluids 2005, 35 (2), 119–127. DOI: 10.1016/j.supflu.2004.12.011
- 34 L. Fiori, J. Supercrit. Fluids 2009, 50 (3), 218–224. DOI: 10.1016/j.supflu.2009.06.011
- 35 L. Fiori, J. Supercrit. Fluids 2007, 43 (1), 43–54. DOI: 10.1016/j.supflu.2007.04.009