Thermal Decomposition of Sulfur Compounds and their Role in Coke Formation during Steam Cracking of Heptane
Natalia Olahova
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorMarko R. Djokic
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorRuben Van de Vijver
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorNenad D. Ristic
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorGuy B. Marin
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorMarie-Françoise Reyniers
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorCorresponding Author
Kevin M. Van Geem
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.Search for more papers by this authorNatalia Olahova
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorMarko R. Djokic
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorRuben Van de Vijver
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorNenad D. Ristic
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorGuy B. Marin
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorMarie-Françoise Reyniers
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Search for more papers by this authorCorresponding Author
Kevin M. Van Geem
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.
Ghent University, Laboratory for Chemical Technology, Ghent, Belgium.Search for more papers by this authorAbstract
Sulfur-containing compounds play a key role in many industrial processes. Particularly for the steam cracking process, they have been linked with increased olefin selectivity, CO formation, and coke inhibition. The influence of four different sulfur-containing additives, methanedithione, (methyldisulfanyl)methane, (methylsulfanyl)methane, and dimethyl sulfoxide, on product selectivity, coke deposition, and CO production during steam cracking of a surrogate light naphtha feed is investigated. The use of online comprehensive 2D gas chromatography with sulfur chemiluminescence detection (GC×GC-SCD) is the key enabling technology to characterize the sulfur compounds. Steam cracking in a pilot-plant unit revealed that all studied sulfur compounds are efficient in reducing the CO yield. Simultaneously, they strongly promote coke.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600219_sm_miscellaneous_information.pdf335.6 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 H. Zimmermann, R. Walzl, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2000.
- 2 L. D. Schmidt, J. Siddall, M. Bearden, AIChE J. 2000, 46 (8), 1492–1495. DOI: 10.1002/aic.690460802
- 3 A. E. Muñoz, K. M. Van Geem, M.-F. Reyniers, G. B. Marin, Ind. Eng. Chem. Res. 2014, 53 (15), 6358–6371. DOI: 10.1021/ie500391b
- 4 G. C. Reyniers, G. F. Froment, F.-D. Kopinke, G. Zimmermann, Ind. Eng. Chem. Res. 1994, 33 (11), 2584–2590. DOI: 10.1021/ie00035a009
- 5 P. M. Plehiers, G. C. Reyniers, G. F. Froment, Ind. Eng. Chem. Res. 1990, 29 (4), 636–641. DOI: 10.1021/ie00100a022
- 6 S. Wauters, G. B. Marin, Chem. Eng. J. 2001, 82 (1–3), 267–279. DOI: 10.1016/S1385-8947(00)00354-5
- 7 C. M. Schietekat, D. J. Van Cauwenberge, K. M. Van Geem, G. B. Marin, AIChE J. 2014, 60 (2), 794–808. DOI: 10.1002/aic.14326
- 8 C. M. Schietekat, M. W. M. van Goethem, K. M. Van Geem, G. B. Marin, Chem. Eng. J. 2014, 238, 56–65. DOI: 10.1016/j.cej.2013.08.086
- 9 M.-F. S. G. Reyniers, G. F. Froment, Ind. Eng. Chem. Res. 1995, 34 (3), 773–785. DOI: 10.1021/ie00042a009
- 10 I. Dhuyvetter, M.-F. Reyniers, G. F. Froment, G. B. Marin, D. Viennet, Ind. Eng. Chem. Res. 2001, 40 (20), 4353–4362. DOI: 10.1021/ie001131b
- 11 N. Rahimi, R. Karimzadeh, S. M. Jazayeri, K. D. Nia, Chem. Eng. J. 2014, 238, 210–218. DOI: 10.1016/j.cej.2013.09.111
- 12 M. Bajus, V. Veselý, Collect. Czech. Chem. Commun. 1980, 45 (1), 238–254. DOI: 10.1135/cccc19800238
- 13 M. Bajus, V. Veselý, J. Baxa, P. A. Leclercq, J. A. Rijks, Ind. Eng. Chem. Res. Dev. 1981, 20, 4.
- 14 J. Wang, M.-F. Reyniers, G. B. Marin, Ind. Eng. Chem. Res. 2007, 46 (12), 4134–4148. DOI: 10.1021/ie061096u
- 15 S. M. Jazayeri, R. Karimzadeh, Energy Fuels 2011, 25 (10), 4235–4247. DOI: 10.1021/ef2005173
- 16 M. Bajus, Sulfur Rep. 1989, 9 (1), 46.
- 17 M. Bajus, J. Baxa, Collect. Czech. Chem. Commun. 1985, 50, 16.
- 18 Y. Kida, A. G. Carr, W. H. Green, Energy Fuels 2014, 28 (10), 6589–6595. DOI: 10.1021/ef5015956
- 19 L. J. J. Catalan, V. Liang, C. Q. Jia, J. Chromatogr. A 2006, 1136 (1), 89–98. DOI: 10.1016/j.chroma.2006.09.056
- 20 R. Andersson, M. Boutonnet, S. Järås, J. Chromatogr. A 2012, 1247, 134–145. DOI: 10.1016/j.chroma.2012.05.060
- 21 U. Nylén, J. F. Delgado, S. Järås, M. Boutonnet, Fuel Process. Technol. 2004, 86 (2), 223–234. DOI: 10.1016/j.fuproc.2004.03.001
- 22 S. P. Pyl, T. Dijkmans, J. M. Antonykutty, M.-F. Reyniers, A. Harlin, K. M. Van Geem, G. B. Marin, Bioresour. Technol. 2012, 126, 48–55. DOI: 10.1016/j.biortech.2012.09.037
- 23 K. M. Van Geem, S. P. Pyl, M.-F. Reyniers, J. Vercammen, J. Beens, G. B. Marin, J. Chromatogr. A 2010, 1217 (43), 6623–6633. DOI: 10.1016/j.chroma.2010.04.006
- 24 T. Dijkmans, M. R. Djokic, K. M. Van Geem, G. B. Marin, Fuel 2015, 140, 398–406. DOI: 10.1016/j.fuel.2014.09.055
- 25 D. L. Trimm, in Pyrolysis – Theory and Industrial Practice (Eds: L. F. Allbright), Academic Press, New York 1983, 203–232.
- 26
D. Salari, A. Niaei, R. Shoja Mohammad, R. Nabavi, Int. J. Chem. React. Eng. 2010, 8 (1), 20. DOI: 10.2202/1542-6580.2304
10.2202/1542‐6580.2304 Google Scholar
- 27 A. G. Vandeputte, M. F. Reyniers, G. B. Marin, J. Phys. Chem. A 2010, 114 (39), 10531–10549. DOI: 10.1021/jp103357z
- 28 L. G. S. Shum, S. W. Benson, Int. J. Chem. Kinet. 1985, 17 (7), 749–761. DOI: 10.1002/kin.550170705
- 29
M. E. Peach, E. Weissflog, N. Pelz, J. Mass Spectrom. 1975, 10 (9), 6. DOI: 10.1002/oms.1210100914
10.1002/oms.1210100914 Google Scholar
- 30 F. C. Thyrion, G. Debecker, Int. J. Chem. Kinet. 1973, 5 (4), 583–592. DOI: 10.1002/kin.550050409