Effect of Bed Height on the Performance of a Fixed Mo/HZSM-5 Bed in Direct Aromatization of Methane
Yuebing Xu
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Search for more papers by this authorYang Song
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Search for more papers by this authorXiaohao Liu
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
Search for more papers by this authorCorresponding Author
Zhan-Guo Zhang
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.Search for more papers by this authorYuebing Xu
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Search for more papers by this authorYang Song
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Search for more papers by this authorXiaohao Liu
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
Search for more papers by this authorCorresponding Author
Zhan-Guo Zhang
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.Search for more papers by this authorAbstract
The catalyst-overloading strategy is often employed to extend the catalytic lifetime of fixed catalyst bed reactors in chemical processes. The applicability of this strategy to the Mo/HZSM-5 catalyst for non-oxidative methane dehydroaromatization was confirmed for the first time by examining the influence of bed height on the catalytic stability and lifetime aromatic productivity of an integral fixed Mo/HZSM-5 bed at a defined temperature and different CH4 superficial velocities. Increasing the bed height proved to have a very limited effect on extending either the stable period of aromatics production of the bed or its lifetime aromatics productivity. Simultaneous coke formation over all layers of the bed was also confirmed to be responsible for rapid deactivation of the whole bed, and pyrolysis of the intermediate C2H4 was found to be the dominant route to coke formation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600178_sm_miscellaneous_information.pdf226.6 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 K. Otsuka, Y. Wang, Appl. Catal., A 2001, 222, 145–161. DOI: 10.1016/S0926-860X(01)00837-7
- 2 A. Holmen, Catal. Today 2009, 142, 2–8. DOI: 10.1016/j.cattod.2009.01.004
- 3 M. C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, J. L. G. Fierro, Catal. Today 2011, 171, 15–23. DOI: 10.1016/j.cattod.2011.02.028
- 4 J. H. Lunsford, Catal. Today 2000, 63, 165–174. DOI: 10.1016/S0920-5861(00)00456-9
- 5 K. Skutil, M. Taniewski, Fuel Process. Technol. 2007, 88, 877–882. DOI: 10.1016/j.fuproc.2007.04.006
- 6 A. Caballero, P. J. Pérez, Chem. Soc. Rev. 2013, 42, 8809–8820. DOI: 10.1039/C3CS60120J
- 7 L. S. Wang, L. X. Tao, M. S. Xie, G. F. Xu, J. S. Huang, Y. D. Xu, Catal. Lett. 1993, 21, 35–41. DOI: 10.1007/bf00767368
- 8 B. M. Weckhuysen, D. J. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal. 1998, 175, 338–346. DOI: 10.1006/jcat.1998.2010
- 9 Y. D. Xu, L. W. Lin, Appl. Catal., A 1999, 188, 53–67. DOI: 10.1016/s0926-860x(99)00210-0
- 10 C. Bouchy, I. Schmidt, J. R. Anderson, C. J. H. Jacobsen, E. G. Derouane, S. B. Derouane-Abd Hamid, J. Mol. Catal. A 2000, 163, 283–296. DOI: 10.1016/S1381-1169(00)00392-7
- 11 Y. D. Xu, X. H. Bao, L. W. Lin, J. Catal. 2003, 216, 386–395. DOI: 10.1016/s0021-9517(02)00124-0
- 12 A. Saıoğlan, A. Erdem-Şenatalar, Ö. T. Savaşçı, Y. B. Taârit, J. Catal. 2004, 226, 210–214. DOI: 10.1016/j.jcat.2004.05.029
- 13 L. Óvári, F. Solymosi, J. Mol. Catal. A 2004, 207, 35–40. DOI: 10.1016/S1381-1169(03)00469-2
- 14 Z. R. Ismagilov, E. V. Matus, L. T. Tsikoza, Energy Environ. Sci. 2008, 1, 526–541. DOI: 10.1039/b810981h
- 15 J.-P. Tessonnier, B. Louis, S. Rigolet, M. J. Ledoux, C. Pham-Huu, Appl. Catal., A 2008, 336, 79–88. DOI: 10.1016/j.apcata.2007.08.026
- 16 S. Q. Ma, X. G. Guo, L. X. Zhao, S. Scott, X. H. Bao, J. Energy Chem. 2013, 22, 1–20. DOI: 10.1016/s2095-4956(13)60001-7
- 17 P. Tang, Q. J. Zhu, Z. X. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580–2591. DOI: 10.1039/c4ee00604f
- 18 J. J. Spivey, G. Hutchings, Chem. Soc. Rev. 2014, 43, 792–803. DOI: 10.1039/c3cs60259a
- 19 X. G. Guo, G. Z. Fang, G. Li, H. Ma, H. J. Fan, L. Yu, C. Ma, X. Wu, D. H. Deng, M. M. Wei, D. L. Tan, R. Si, S. Zhang, J. Q. Li, L. T. Sun, Z. C. Tang, X. L. Pan, X. H. Bao, Science 2014, 344, 616–619. DOI: 10.1126/science.1253150
- 20 J. Bedard, D. Y. Hong, A. Bhan, J. Catal. 2013, 306, 58–67. DOI: 10.1016/j.jcat.2013.06.003
- 21 C. H. L. Tempelman, E. J. M. Hensen, Appl. Catal., B 2015, 176–177, 731–739. DOI: 10.1016/j.apcatb.2015.04.052
- 22 Y. B. Xu, Y. Song, Z. G. Zhang, Catal. Today 2016, in press. DOI: 10.1016/j.cattod.2016.03.037
- 23 Z. G. Zhang, Y. B. Xu, Y. Song, H. T. Ma, Y. Yamamoto, Environ. Prog. Sustainable Energy 2016, 35 (2), 325–333. DOI: 10.1002/ep.12287
- 24 B. Cook, D. Mousko, W. Hoelderich, R. Zennaro, Appl. Catal., A 2009, 365, 34–41. DOI: 10.1016/j.apcata.2009.05.037
- 25 M. P. Gimeno, J. Soler, J. Herguido, M. Menéndez, Ind. Eng. Chem. Res. 2010, 49, 996–1000. DOI: 10.1021/ie900682y
- 26 T. Hensler, Y. X. Zhang, L. Mleczko, J. Assmann, R. Bellinghausen, W. Schwieger, K. E. Wirth, in Proc. of the 11th Int. Conf. on Fluidized Bed Technology (Eds: J. H. Li), Chinese Academy of Sciences, Beijing 2014.
- 27 M. T. Portilla, F. J. Llopis, C. Martínez, Catal. Sci. Technol. 2015, 5, 3806–3821. DOI: 10.1039/c5cy00356c
- 28 S. Natesakhawat, N. C. Means, B. H. Howard, M. Smith, V. Abdelsayed, J. P. Baltrus, Y. Cheng, J. W. Lekse, D. Link, B. D. Morreale, Catal. Sci. Technol. 2015, 5, 5023–5036. DOI: 10.1039/c5cy00934k
- 29 C. Y. Sun, G. Z. Fang, X. G. Guo, Y. L. Hu, S. Q. Ma, T. H. Yang, J. Han, H. Ma, D. L. Tian, X. H. Bao, J. Energy Chem. 2015, 24, 257–263. DOI: 10.1016/S2095-4956(15)60309-6
- 30
Z. W. Cao, H. Q. Jiang, H. X. Luo, S. Baumann, W. A. Meulenberg, J. Assmann, L. Mleczko, Y. Liu, J. Caro, Angew. Chem., Int. Ed. 2013, 125 (51), 14039–14042. DOI: 10.1002/ange.201307935
10.1002/ange.201307935 Google Scholar
- 31 T. Hatagishi, T. Yamada, Y. Tomohiro, H. Takuya, WO Patent 128 426 A1, 2009.
- 32 Y. B. Xu, H. T. Ma, Y. Yamamoto, Y. Suzuki, Z. G. Zhang, J. Nat. Gas Chem. 2012, 21, 729–744. DOI: 10.1016/S1003-9953(11)60426-X
- 33 Y. B. Xu, J. Y. Lu, Y. Suzuki, Z. G. Zhang, H. T. Ma, Y. Yamamoto, Chem. Eng. Process. 2013, 72, 90–102. DOI: 10.1016/j.cep.2013.05.016
- 34 Y. Song, Y. B. Xu, Y. Suzuki, H. Nakagome, Z. G. Zhang, Appl. Catal., A 2014, 482, 387–396. DOI: 10.1016/j.apcata.2014.06.018
- 35 Y. B. Xu, J. D. Wang, Y. Suzuki, Z. G. Zhang, Appl. Catal., A 2011, 409–410, 181–193. DOI: 10.1016/j.apcata.2011.10.003
- 36 J. Bai, S. L. Liu, S. J. Xie, L. Y. Xu, L. W. Lin, Catal. Lett. 2003, 90, 123–130. DOI: 10.1023/B:CATL.0000004104.12763.80
- 37 A. Martínez, E. Peris, M. Derewinski, A. Burkat-Dulak, Catal. Today 2011, 169, 75–84. DOI: 10.1016/j.cattod.2010.11.063
- 38 V. Fila, M. Bernauer, B. Bernauer, Z. Sobalik, Catal. Today 2015, 256, 269–275. DOI: 10.1016/j.cattod.2015.02.035
- 39 Y. B. Xu, J. Y. Lu, J. D. Wang, Y. Suzuki, Z. G. Zhang, Chem. Eng. J. 2011, 168, 390–402. DOI: 10.1016/j.cej.2011.01.047
- 40 H. Huang, W. Z. Qian, T. Wei, Y. Li, F. Wei, J. Chem. Ind. Eng. (China) 2006, 57 (8), 1918–1922.
- 41 R. W. Borry, Y. H. Kim, A. Huffsnith, J. A. Reimer, E. Iglesia, J. Phys. Chem. B 1999, 103 (28), 5787–5796. DOI: 10.1021/jp990866v
- 42 S. Kikuchi, R. Kojima, H. T. Ma, J. Bai, M. Ichikawa, J. Catal. 2006, 242, 349–356. DOI: 10.1016/j.jcat.2006.06.024
- 43 Y. Song, Y. B. Xu, Y. Suzuki, H. Nakagome, X. X. Ma, Z. G. Zhang, J. Catal. 2015, 330, 261–272. DOI: 10.1016/j.jcat.2015.07.017
- 44 Zhan-Guo Zhang, Unpublished results, available upon request, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
- 45 R. Ohnishi, S. T. Liu, Q. Dong, L. S. Wang, M. Ichikawa, J. Catal. 1999, 182, 92–103. DOI: 10.1006/jcat.1998.2319
- 46 E. V. Matus, I. Z. Ismagilov, O. B. Sukhova, V. I. Zaikovskii, L. T. Tsikoza, Z. R. Ismagilov, Ind. Eng. Chem. Res. 2007, 46 (12), 4063–4074. DOI: 10.1021/ie0609564