Group Contribution Methods for Estimation of Ionic Liquid Heat Capacities: Critical Evaluation and Extension
Corresponding Author
Paul Nancarrow
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.Search for more papers by this authorMoira Lewis
Queen's University Belfast, QUILL Research Centre, Northern Ireland, UK.
Search for more papers by this authorLamis AbouChacra
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.
Search for more papers by this authorCorresponding Author
Paul Nancarrow
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.Search for more papers by this authorMoira Lewis
Queen's University Belfast, QUILL Research Centre, Northern Ireland, UK.
Search for more papers by this authorLamis AbouChacra
American University of Sharjah, Department of Chemical Engineering, Sharjah, United Arab Emirates.
Search for more papers by this authorAbstract
Recently, new group contribution method (GCM) models have been developed for ionic liquids (ILs). However, difficulty arises in choosing an appropriate GCM for a given property estimation due to the fact that the reported accuracies do not enable meaningful comparison since they have been tested against different and limited datasets. Furthermore, many GCMs lack the parameters necessary to predict heat capacities for many new ILs. To overcome these problems, an extensive database of IL heat capacity data as a function of temperature was compiled and used to evaluate two different GCM approaches, analogously named the Meccano and Lego approaches, based on the nature of the fundamental building blocks used in each model. Although the Meccano approach was found to be slightly more accurate, the Lego approach has much broader applicability and is compatible with process simulation and IL design.
References
- 1 M. J. Earle, K. R. Seddon, Pure Appl. Chem. 2000, 72 (7), 1391–1398. DOI: 10.1351/pac200072071391
- 2 K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. 2004, 219 (1), 93–98. DOI: 10.1016/j.fluid.2004.02.003
- 3 S. Z. El Abedin, F. Endres, Acc. Chem. Res. 2007, 40 (11), 1106–1113. DOI: 10.1021/ar700049w
- 4 N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37 (1), 123–150. DOI: 10.1039/b006677j
- 5 J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2009, 48 (6), 2739–2751. DOI: 10.1021/ie8016237
- 6 Q. Gan, Y. R. Zou, D. Rooney, P. Nancarrow, J. Thompson, L. Z. Liang, M. Lewis, Adv. Colloid Interface Sci. 2011, 164 (1–2), 45–55. DOI: 10.1016/j.cis.2011.01.005
- 7 G. T. Wei, Z. S. Yang, C. J. Chen, Anal. Chim. Acta 2003, 488 (2), 183–192. DOI: 10.1016/S0003-2670(03)00660-3
- 8 I. F. McConvey, D. Woods, M. Lewis, Q. Gan, P. Nancarrow, Org. Proc. Res. Dev. 2012, 16 (4), 612–624. DOI: 10.1021/op2003503
- 9 T. Welton, Coord. Chem. Rev. 2004, 248 (21–24), 2459–2477. DOI: 10.1016/j.ccr.2004.04.015
- 10 J. Esser, P. Wasserscheid, A. Jess, Green Chem. 2004, 6 (7), 316–322. DOI: 10.1039/b407028c
- 11 M. C. Buzzeo, R. G. Evans, R. G. Compton, ChemPhysChem 2004, 5 (8), 1106–1120. DOI: 10.1002/cphc.200301017
- 12 H. Chen, Y. He, J. Zhu, H. Alias, Y. Ding, P. Nancarrow, C. Hardacre, D. Rooney, C. Tan, Int. J. Heat Fluid Flow 2008, 29 (1), 149–155. DOI: 10.1016/j.ijheatfluidflow.2007.05.002
- 13 M. Freemantle, Chem. Eng. News 1998, 76 (13), 32–37. DOI: 10.1021/cen-v076n013.p032
- 14 M. Freemantle, An Introduction to Ionic Liquids, 1st ed., Royal Society of Chemistry, London 2010.
- 15 B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York 2000.
- 16 Y. Khetib, O. Larkeche, A.-H. Meniai, A. Radwan, Chem. Eng. Technol. 2013, 36 (11), 1924–1934. DOI: 10.1002/ceat.201300058
- 17 J. O. Valderrama, P. A. Robles, Ind. Eng. Chem. Res. 2007, 46 (4), 1338–1344. DOI: 10.1021/ie0603058
- 18 J. Jacquemin, R. Ge, P. Nancarrow, D. W. Rooney, M. F. Costa Gomes, A. A. H. Padua, C. Hardacre, J. Chem. Eng. Data 2008, 53 (3), 716–726.
- 19 R. L. Gardas, J. A. P. Coutinho, Fluid Phase Equilib. 2008, 263 (1), 26–32.
- 20 R. L. Gardas, J. A. P. Coutinho, Fluid Phase Equilib. 2008, 266 (1), 195–201.
- 21 J. A. Lazzus, Fluid Phase Equilib. 2012, 313, 1–6.
- 22 R. L. Gardas, J. A. P. Coutinho, Ind. Eng. Chem. Res. 2008, 47 (15), 5751–5757.
- 23 A. N. Soriano, A. M. Agapito, L. J. L. I. Lagumbay, A. R. Caparanga, M.-H. Li, J. Taiwan Inst. Chem. Eng. 2010, 41 (3), 307–314. DOI: 10.1016/j.jtice.2009.11.003
- 24 M. Zábranský, V. Růžička Jr., J. Phys. Chem. Ref. Data 2004, 33 (4), 1071–1081.
- 25
G. Hohne, W. Hemminger, H.-J. Flammersheim, Differential Scanning Calorimetry, 2nd ed., Springer, Berlin 2003.
10.1007/978-3-662-06710-9 Google Scholar
- 26 R. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow, D. W. Rooney, J. Chem. Eng. Data 2008, 53 (9), 2148–2153. DOI: 10.1021/je800335v
- 27 J. O. Valderrama, A. Toro, R. Rojas, J. Chem. Thermodyn. 2011, 43, 1068–1073.
- 28 D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Thermochim. Acta 2005, 433 (1–2), 149–152.
- 29 K. G. Joback, R. C. Reid, Chem. Eng. Commun. 1987, 57, 233–243. DOI: 10.1080/00986448708960487
- 30 http://ilthermo.boulder.nist.gov/
- 31 A. Diedrichs, J. Gmehling, Fluid Phase Equilib. 2006, 244 (1), 68–77. DOI:
- 32 D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Thermochim. Acta 2005, 433, 149–152.
- 33 Z.-H. Zhang, Z.-C. Tan, L.-X. Sun, Y. Jia-Zhen, X.-C. Lv, Q. Shi, Thermochim. Acta 2006, 447 (2), 141–146.
- 34 G. Garcia-Miaja, J. Troncoso, L. Romani, Fluid Phase Equilib. 2008, 274, 59–67.
- 35 C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data 2004, 49, 954–964.
- 36 Y. U. Paulechka, A. V. Blokhin, G. J. Kabo, A. A. Strechan, J. Chem. Thermodyn. 2007, 39, 866–877.
- 37 D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Thermochim. Acta 2005, 433, 149–152.
- 38 A. F. Ferreira, P. N. Simoes, A. G. M. Ferreira, J. Chem. Thermodyn. 2011, 45 (1), 16–27.
- 39 L. E. Ficke, H. Rodriguez, J. F. Brennecke, J. Chem. Eng. Data 2008, 53, 2112–2119.
- 40 P. Navarro, M. Larriba, E. Rojo, J. Garcia, F. Rodriguez, J. Chem. Eng. Data 2013, 58 (8), 2187–2193.
- 41 Y. U. Paulechka, G. J. Kabo, A. V. Blokhin, A. S. Shaplov, E. I. Lozinskaya, Y. S. Vygodskii, J. Chem. Thermodyn. 2007, 39, 158–166.
- 42 J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson, J. F. Brennecke, J. Chem. Thermodyn. 2005, 395, 559–568.
- 43 N. Calvar, E. Gómez, E. Macedo, A. Domínguez, Thermochim. Acta 2013, 565, 178–182.
- 44 Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu, J. Yang, X. Zhang, Y. Deng, J. Phys. Chem. B 2007, 111, 2864–2872.
- 45 Q.-S. Liu, J.-N. Zhao, J. Tong, L.-X. Sun, Z.-C. Tan, U. Welz-Biermann, J. Chem. Eng. Data 2010, 55 (9), 4036–4038.
- 46 D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Thermochim. Acta 2005, 433, 149–152.
- 47 I. Bandres, M. C. Lopez, M. Castro, J. Barbera, C. Lafuente, J. Chem. Thermodyn. 2012, 44 (1), 148–153.
- 48 K.-S. Kim, B.-K. Shin, F. Ziegler, Fluid Phase Equilib. 2004, 218, 215–220.
- 49 L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeirina, J. Troncoso, L. Romani, J. M. S. S. Esperança, H. J. R. Guedes, H. C. de Sousa, Green Chem. 2004, 6 (8), 369–381.
- 50 M. E. Van Valkenburg, R. L. Vaughn, M. Williams, J. S. Wilkes, Thermochim. Acta 2005, 425, 181–188.
- 51 H.-C. Hu, A. N. Soriano, R. B. Leron, M.-H. Li, Thermochim. Acta 2011, 519, 44–49.
- 52 M. Yang, J.-N. Zhao, Q.-S. Liu, L.-X. Sun, P.-F. Yan, Z.-C. Tan, U. Welz-Biermann, Phys. Chem. Chem. Phys. 2010, 13, 199–206.
- 53 A. A. Strechan, Y. U. Paulechka, A. V. Blokhin, G. J. Kabo, J. Chem. Thermodyn. 2008, 40 (4), 632–639.
- 54 A. V. Blokhin, Y. U. Paulechka, A. A. Strechan, G. J. Kabo, J. Phys. Chem. B 2008, 112, 4357–4364.
- 55 J. Troncoso, C. A. Cerdeirina, Y. A. Sanmamed, L. Romani, L. P. N. Rebelo, J. Chem. Eng. Data 2006, 51, 1856–1859.
- 56 M. J. Dávila, S. Aparicio, R. Alcalde, B. García, J. M. Leal, Green Chem. 2007, 9, 221–232.
- 57 G. J. Kabo, A. V. Blokhin, Y. U. Paulechka, A. G. Kabo, M. P. Shymanovich, J. Chem. Eng. Data 2004, 49 (3), 453–461.
- 58 K.-S. Kim, B.-K. Shin, F. Ziegler, Fluid Phase Equilib. 2004, 218, 215–220.
- 59 G. Chatel, L. Leclerc, E. Naffrechoux, C. Bas, N. Kardos, C. Goux-Henry, B. Andrioletti, M. Draye, J. Chem. Eng. Data 2012, 57 (12), 3385–3390.
- 60 Z.-H. Zhang, L.-X. Sun, Z.-C. Tan, F. Xu, X.-C. Lv, J.-L. Zeng, Y. Sawada, J. Therm. Anal. 2007, 89 (1), 289–294.
- 61 Y. A. Sanmamed, P. Navia, D. Gonzalez-Salgado, J. Troncoso, L. Romani, J. Chem. Eng. Data 2010, 55 (2), 600–604.
- 62 J.-G. Li, Y.-F. Hu, S. Ling, J.-Z. Zhang, J. Chem. Eng. Data 2011, 56 (7), 3068–3072.
- 63 I. Bandres, B. Giner, H. Artigas, C. Lafuente, F. M. Royo, J. Chem. Eng. Data 2009, 54, 236–240.
- 64 M. Krolikowska, K. Paduszynski, M. Zawadzki, J. Chem. Eng. Data 2013, 58 (2), 285–293.
- 65 M. Anouti, J. Jacquemin, D. Lemordant, J. Chem. Eng. Data 2010, 55 (12), 5719–5728.
- 66 U. Domanska, R. Bogel-Lukasik, J. Phys. Chem. B 2005, 109, 12124–12132.
- 67 R. L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D. W. Rooney, J. Chem. Eng. Data 2010, 55 (4), 1505–1515.
- 68 A. G. M. Ferreira, P. N. Simoes, A. F. Ferreira, M. A. Fonseca, M. S. A. Oliveira, A. S. M. Trino, J. Chem. Thermodyn. 2013, 64, 80–92.
- 69 J. O. Valderrama, L. A. Forero, R. E. Rojas, Ind. Eng. Chem. Res. 2012, 51 (22), 7838–7844. DOI: 10.1021/ie202934g