Modeling of a Slurry Bubble Column Reactor for the Production of Biofuels via the Fischer-Tropsch Synthesis
Corresponding Author
Camilla Berge Vik
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.Search for more papers by this authorJannike Solsvik
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorMagne Hillestad
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorHugo A. Jakobsen
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorCorresponding Author
Camilla Berge Vik
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.Search for more papers by this authorJannike Solsvik
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorMagne Hillestad
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorHugo A. Jakobsen
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Search for more papers by this authorAbstract
The Fischer-Tropsch synthesis carried out in a slurry bubble column is modeled with a focus on the production of liquid fuels from biomass. Mass, momentum and energy balances are formulated for the gas, liquid and solid phases and solved by the orthogonal collocation method. A multifluid population balance model is utilized. The interfacial area between the gas and liquid phases can be calculated directly from a mass density function of the bubbles. Five different compositions of feed synthesis gas representing biomass (with and without water-gas shift reaction), coal (with and without autothermal reforming), and natural gas (after autothermal reforming) are simulated to highlight the effect of the synthesis gas composition.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201400647_sm_miscellaneous_information.pdf417 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 F. Trippe, M. Fröhling, F. Schultmann, R. Stahl, E. Heinrich, Fuel Process. Technol. 2011, 92 (11), 2169–2184. DOI: 10.1016/j.fuproc.2011.06.026
- 2 A. Rafiee, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim 2012.
- 3 D. Tapasvi, R. Khalil, Ø. Skreiberg, K.-Q. Tran, M. Grønli, Energy Fuels 2012, 26 (8), 5232–5240. DOI: 10.1021/ef300993q
- 4 J. A. Moulijn, M. Makkee, A. van Diepen, Chemical Process Technology, 1st ed., Wiley, Chichester 2011.
- 5 L. Sehabiague, B. Morsi, Int. J. Chem. React. Eng. 2013, 11 (1), 1–22. DOI: 10.1515/ijcre-2012-0017
- 6 T. S. Lee, J. N. Chung, Energy Fuels 2012, 26 (2), 1363–1379. DOI: 10.1021/ef201667a
- 7 S. A. Gardezi, B. Joseph, F. Prado, A. Barbosa, Biomass Bioenergy 2013, 59, 168–186. DOI: 10.1016/j.biombioe.2013.09.010
- 8 P. H. Calderbank, F. Evans, R. Farley, G. Jepson, A. Poll, in Catalysis in Practice, Institution of Chemical Engineers, London 1963, 66–74.
- 9 R. Farley, D. J. Ray, J. Inst. Petrol. 1964, 50 (482), 27–46.
- 10 H. Kölbel, M. Ralek, Catal. Rev. 1980, 21 (2), 225–274.
- 11 J. C. W. Kuo, F. P. Di Sanzo, W. E. Garwood, K. M. Gupte, C. K. Lang, T. M. Leib, M. Malladi, T. Molina, D. M. Nace, J. Smith, N. Tarallo, J. F. Van Kirk, Two-Stage Process for Conversion of Syngas to High Octane Gasoline, US DOE Report 60019, Final Report 1985.
- 12 L. Sehabiague, B. I. Morsi, Int. J. Chem. React. Eng. 2013, 11 (1), 83–102. DOI: 10.1515/ijcre-2012-0042
- 13 P. Rollbusch, M. Bothe, B. Becker, M. Ludwig, M. Grünewald, M. Schlüter, R. Franke, Chem. Eng. Sci. 2014, in press. DOI: 10.1016/j.ces.2014.11.061
- 14 P. J. Woolcock, R. C. Brown, Biomass Bioenergy 2013, 52, 54–84. DOI: 10.1016/j.biombioe.2013.02.036
- 15
A. Steinberg, M. Dry, Stud. Surf. Sci. Catal. 2004, 152, 406–481. DOI: 10.1016/S0167-2991(04)80462-2
10.1016/S0167‐2991(04)80462‐2 Google Scholar
- 16 Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, W. Pan, Energy Fuels 2008, 22 (3), 1720–1730. DOI: 10.1021/ef7005707
- 17 S.-Y. Lin, in Hydrogen Fuel Production, Transport and Storage (Ed: R. B. Gupta), CRC Press, Boca Raton 2009.
- 18 C. Maretto, R. Krishna, Catal. Today 1999, 52 (2/3), 279–289. DOI: 10.1016/S0920-5861(99)00082-6
- 19 R. Güttel, Ph.D. Thesis, TU Clausthal, Clausthal 2009.
- 20 S. T. Sie, Rev. Chem. Eng. 1998, 14 (2), 109–157. DOI: 10.1515/REVCE.1998.14.2.109
- 21 J. Solsvik, H. A. Jakobsen, Rev. Chem. Eng. 2013, 29 (2), 63–98. DOI: 10.1515/revce-2012-0018
- 22 I. C. Yates, C. N. Satterfield, Energy Fuels 1991, 5 (1), 168–173. DOI: 10.1021/ef00025a029
- 23 P. H. Calderbank, M. B. Moo-Young, Chem. Eng. Sci. 1961, 16 (1/2), 39–54. DOI: 10.1016/0009-2509(61)87005-X
- 24 W.-D. Deckwer, R. Burckhart, G. Zoll, Chem. Eng. Sci. 1974, 29 (11), 2177–2188. DOI: 10.1016/0009-2509(74)80025-4
- 25 G. Q. Yang, L. S. Fan, AIChE J. 2003, 49 (8), 1995–2008. DOI: 10.1002/aic.690490810
- 26 A. Behkish, R. Lemoine, L. Sehabiague, R. Oukaci, B. I. Morsi, Chem. Eng. J. 2007, 128 (2/3), 69–84. DOI: 10.1016/j.cej.2006.10.016
- 27 C. A. Coulaloglou, L. L. Tavlarides, Chem. Eng. Sci. 1977, 32 (11), 1289–1297. DOI: 10.1016/0009-2509(77)85023-9
- 28 R. B. Diemer, J. H. Olson, Chem. Eng. Sci. 2002, 57 (19), 4187–4198. DOI: 10.1016/S0009-2509(02)00366-4
- 29 M. J. Prince, H. W. Blanch, AIChE J. 1990, 36 (10), 1485–1499. DOI: 10.1002/aic.690361004
- 30 C. Erkey, J. B. Rodden, A. Akgerman, Can. J. Chem. Eng. 1990, 68 (4), 661–665. DOI: 10.1002/cjce.5450680418
- 31 M. Hillestad, Comput. Chem. Eng. 2014, in press.
- 32 A. K. Nayak, Z. Borka, L. E. Patruno, F. Sporleder, C. A. Dorao, H. A. Jakobsen, Ind. Eng. Chem. Res. 2011, 50 (3), 1786–1798. DOI: 10.1021/ie101664w
- 33
A. Tomiyama, Multiphase Sci. Technol. 1998, 10 (4), 369–405. DOI: 10.1615/MultScienTechn.v10.i4.40
10.1615/MultScienTechn.v10.i4.40 Google Scholar
- 34 S. A. Morsi, A. J. Alexander, J. Fluid Mech. 1972, 55 (2), 193–208. DOI: 10.1017/S0022112072001806
- 35 M. Ishii, N. Zuber, AIChE J. 1979, 25 (5), 843–855. DOI: 10.1002/aic.690250513
- 36 M. R. Rampure, A. A. Kulkarni, V. V. Ranade, Ind. Eng. Chem. Res. 2007, 46 (25), 8431–8447. DOI: 10.1021/ie070079h
- 37 W.-D. Deckwer, Chem. Eng. Sci. 1980, 35 (6), 1341–1346. DOI: 10.1016/0009-2509(80)85127-X
- 38 B. M. Tareef, Colloid J. (USSR) 1940, 6, 545.
- 39 V. Vand, J. Phys. Chem. 1948, 52 (2), 277–299. DOI: 10.1021/j150458a001
- 40 G. Aylward, T. Findlay, SI Chemical Data, 5th ed., Wiley, Milton 2002.
- 41 C. G. Geankoplis, Transport Processes and Separation Process Principles, 4th ed., Prentice Hall, Englewood Cliffs 2003.
- 42 C. G. Visconti, Ind. Eng. Chem. Res. 2014, 53 (5), 1727–1734. DOI: 10.1021/ie4015638
- 43 M. F. M. Post, A. V. van't Hoog, J. K. Minderhoud, S. T. Sie, AIChE J. 1989, 35 (7), 1107–1114.