Partitioning Studies of Glutaminase in Polyethylene Glycol and Salt-Based Aqueous Two-Phase Systems
S. Bolar
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
Search for more papers by this authorP. D. Belur
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
Search for more papers by this authorCorresponding Author
R. Iyyaswami
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, IndiaSearch for more papers by this authorS. Bolar
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
Search for more papers by this authorP. D. Belur
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
Search for more papers by this authorCorresponding Author
R. Iyyaswami
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, India
National Institute of Technology Karnataka, Department of Chemical Engineering, Mangalore, IndiaSearch for more papers by this authorAbstract
The partitioning behavior of glutaminase produced from Zygosaccharomyces rouxii in polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPSs) was investigated. ATPSs comprising of different PEG-salts were considered. Binodal data and tie lines generated for the selected systems were analyzed and correlated with Othmer-Tobias and Bancroft equations. Effects of salt type, PEG molecular weight, concentrations of phase components, and tie line length on enzyme partitioning were evaluated.
References
- 1 J. A. Campos-Sandoval, A. R. Lopez de la Oliva, C. Lobo, J. A. Segura, J. M. Matés, F. J. Alonso, J. M. Marquez, Int. J. Biochem. Cell Biol. 2007, 39, 765–773.
- 2 R. Nandakumar, K. Yoshimune, M. Wakayama, M. Moriguchi, J. Mol. Catal. B: Enzym. 2003, 23, 87–100.
- 3 J.-M. Jeon, H.-I. Lee, S.-H. Han, C.-S. Chang, J.-S. So, Appl. Biochem. Biotechnol. 2009, 162, 146–154.
- 4 J. Kenny, Y. Bao, B. Hamm, L. Taylor, A. Toth, B. Wagers, P. Norman, Protein Expression Purif. 2003, 31, 140–148.
- 5 M. A. Dura, M. Flores, F. Toldra, Int. J. Food Microbiol. 2002, 76, 117–126.
- 6 K. E. Nandini, N. K. Rastogi, Food Bioprocess Technol. 2008, 4, 295–303.
- 7 P. A. Albertsson, Partitioning of Cell Particles and Macromolecules, 3rd ed., John Wiley and Sons, New York 1986..
- 8 B. Mokhtarani, R. Karimzadeh, M. H. Amini, S. D. Manesha, Biochem. Eng. J. 2008, 38, 241–247.
- 9 L. Capezio, D. Romanini, G. A. Pico, B. Nerli, J. Chromatogr. B 2005, 819, 25–31.
- 10 R. Gupta, S. Bradoo, R. K. Saxena, Curr. Sci. 1999, 77, 520–523.
- 11 Y. T. Wu, M. Pereira, A. Wenancio, J. Teixeira, Bioseparation 2000, 9, 247–254.
- 12
S. Raja,
V. R. Murthy,
V. Thivaharan,
V. Rajashekar,
V. Ramesh,
Sci. Technol.
2011,
1,
7–16.
10.5923/j.scit.20110101.02 Google Scholar
- 13
T. Franco,
A. T. Andrews,
J. A. Asenjo,
Biotechnol. Bioeng.
1996,
49,
309–315.
10.1002/(SICI)1097-0290(19960205)49:3<309::AID-BIT9>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 14 L. O. Narhi, Y. Stabinsky, M. Levitt, L. Miller, R. Sachdev, S. Finley, S. Park, C. Kolvenbach, T. Arakawa, Biotechnol. Appl. Biochem. 1991, 13, 12–24.
- 15 D. T. Othmer, P. E. Tobias, Ind. Eng. Chem. 1942, 34, 690–692.
- 16 V. P. Iyer, R. S. Singhal, Bioresource Technol. 2008, 99, 4300–4307.
- 17 R. Iyyaswami, D. P. Belur, B. Girish, H. V. Nagaraj, Sep. Sci. Technol. 2011, 47, 591–598.
- 18 A. Imada, S. Igarasi, K. Nakahama, M. Isono, J. Gen. Microbiol. 1973, 76, 85–99.
- 19 P. Kashyap, A. Sabu, A. Pandey, G. Szakacs, R. Carlos, Process Biochem. 2002, 38, 307–312.
- 20 R. Hatti-Kaul, Aqueous Two-Phase Systems: Methods and Protocols, Humana Press, Totowa, NJ 2000.
- 21 T. Murugesan, M. Perumalsamy, J. Chem. Eng. Data 2005, 50, 1392–1395.
- 22 F. Rahimpour, A. R. Baharvand, Sci. Eng. Technol. 2009, 59, 150–153.
- 23 V. Gupta, S. Nath, S. Chand, Polymer 2002, 43, 3387–3390.
- 24 M. T. Zafarani-Moattar, A. A. Hamidi, J. Chem. Eng. Data 2003, 48, 262–265.
- 25 M. Jayapal, I. Regupathi, T. Murugesan, J. Chem. Eng. 2007, 52, 56–59.
- 26 M. Hu, Q. Zhai, Y. Jiang, L. Jin, Z. Liu, J. Chem. Eng. Data 2004, 49, 1440–1443.
- 27 B. Farruggia, R. Rigatuso, L. Capzio, V. Diez, G. Pico, J. Chromatogr., B 2004, 809, 301–306.
- 28 Y. Xu, G.-q. He, J.-J. Li, J. Zhejiang Univ. Sci. B 2005, 6, 1087–1094.
- 29 I. Yucekan, S. Onal, Process Biochem. 2011, 46, 226–232.
- 30 C.-K. Su, B. H. Chiang, Process Biochem. 2006, 41, 257–263.
- 31 J. R. Rao, B. U. Nair, Bioresource Technol. 2010, 102, 872–878.
- 32 K. Naganagouda, V. H. Mulimani, Process. Biochem. 2008, 43, 1293–1299.
- 33 O. Cascone, B. A. Andrews, J. A. Asenjo, Enzyme Microb. Technol. 1991, 13, 629–635.
- 34 A. B. Hemavathi, K. S. M. S. Raghavarao, Process Biochem. 2011, 46, 649–655.
- 35 H. Yue, Q. Yuan, W. Wang, Biochem. Eng. J. 2007, 37, 231–237.
- 36 J. C. Marcos, L. P. Fonseca, M. T. Ramalho, J. M. S. Cabral, J. Chromatogr., B 1999, 734, 15–22.
- 37 S. Nialinanone, S. Benjakul, W. Visessanguan, H. Kishimura, Process Biochem. 2009, 44, 471–476.