Waste Cooking Oil Conversion to Biodiesel Using Solid Bifunctional Catalysts
Dr. Fatai Alade Aderibigbe
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorCorresponding Author
Harvis Bamidele Saka
Segmax Oil Nigeria Limited, Quality Control Department, Kere-Aje, Ogbondoroko, Kwara State, Nigeria
Correspondence: Harvis Bamidele Saka ([email protected]), Quality Control Department, Segmax Oil Nigeria Limited, Kere-Aje, Ogbondoroko, Kwara State, Nigeria.Search for more papers by this authorDr. Sherif Ishola Mustapha
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorDr. Mutiu Kolade Amosa
Nigerian Upstream Petroleum Regulatory Commission (NUPRC), Waste Management Unit, HSEC SBU, 7, Sylvester Ugoh Crescent, Jabi, Abuja-FCT, Nigeria
National Improved Oil Recovery Centre, NOGEC Complex, NUPRC Annex, 7, Kofo Abayomi Street, Lagos, Victoria Island, Nigeria
Search for more papers by this authorSuleiman Shiru
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorIdowu Abdulfatai Tijani
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorDr. Esther Oluwabunmi Babatunde
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorBisola Taibat Bello
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorDr. Fatai Alade Aderibigbe
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorCorresponding Author
Harvis Bamidele Saka
Segmax Oil Nigeria Limited, Quality Control Department, Kere-Aje, Ogbondoroko, Kwara State, Nigeria
Correspondence: Harvis Bamidele Saka ([email protected]), Quality Control Department, Segmax Oil Nigeria Limited, Kere-Aje, Ogbondoroko, Kwara State, Nigeria.Search for more papers by this authorDr. Sherif Ishola Mustapha
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorDr. Mutiu Kolade Amosa
Nigerian Upstream Petroleum Regulatory Commission (NUPRC), Waste Management Unit, HSEC SBU, 7, Sylvester Ugoh Crescent, Jabi, Abuja-FCT, Nigeria
National Improved Oil Recovery Centre, NOGEC Complex, NUPRC Annex, 7, Kofo Abayomi Street, Lagos, Victoria Island, Nigeria
Search for more papers by this authorSuleiman Shiru
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorIdowu Abdulfatai Tijani
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorDr. Esther Oluwabunmi Babatunde
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorBisola Taibat Bello
University of Ilorin, Department of Chemical Engineering, Faculty of Engineering and Technology, Ilorin, Nigeria
Search for more papers by this authorAbstract
The draining of fossil fuels and their toxic influence on the environment has prompted the need for alternative fuels known as biofuels. Of the various types of biofuel, biodiesel has attracted wide interest in the world today since it promotes carbon neutrality. The transesterification and interesterification process remains the most widely used process route for biodiesel production. In this review, the performance efficiency of solid base, solid acid, and bifunctional solid acid-base catalysts for biodiesel production from waste cooking oil is considered. In particular, the benefit of exploring the biomass-derived acid-base heterogeneous bifunctional catalysts, current status, and future prospects for biodiesel production from waste cooking oil are elucidated.
References
- 1 B. R. Vahid, M. Haghighi, Biodiesel production from sunflower oil over MgO/ MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance, Energy Convers. Manage. 2017, 134, 290–300. DOI: https://doi.org/10.1016/j.enconman.2016.12.048
- 2 F. A. Aderibigbe, S. Shiru, H. B. Saka, M. K. Amosa, S. I. Mustapha, I. A. Mohammed, L. A. Adejumo, M. Abdulraheem, R. U. Owolabi, Heterogeneous Catalysis of Second Generation Oil for Biodiesel Production: A Review, ChemBioEng Rev. 2021, 8 (2), 78–89. DOI: https://doi.org/10.1002/cben.202000035
- 3 M. Hajjari, M. Tabatabaei, M. Aghbashlo, H. Ghanavati, A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization, Renewable Sustainable Energy Rev. 2017, 72, 445–464. DOI: https://doi.org/10.1016/j.rser.2017.01.034
- 4 L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian, D. Mingdong, Opportunities and challenges for biodiesel fuel, Appl. Energy 2011, 88 (4), 1020–1031. DOI: https://doi.org/10.1016/j.apenergy.2010.09.029
- 5 D. N. Thoai, C. Tongurai, K. Prasertsit, A. Kumar, Review on biodiesel production by two-step catalytic conversion, Biocatal. Agric. Biotechnol. 2019, 18, 101023. DOI: https://doi.org/10.1016/j.bcab.2019.101023
- 6 A. Magno, E. Mancaruso, B. Maria, Effects of a biodiesel blend on energy distribution and exhaust emissions of a small CI engine, Energy Convers. Manage. 2015, 96, 72–80. DOI: https://doi.org/10.1016/j.enconman.2015.02.066
- 7
S. K. Ray, O. Prakash, Biodiesel extracted from waste vegetable oil as an alternative fuel for diesel engine: performance evaluation of kirlosker 5 kw engine, Renewable Energy Innov. Technol.
2019, 219–229. DOI: https://doi.org/10.1007/978-981-13-2116-0
10.1007/978-981-13-2116-0_18 Google Scholar
- 8 H. Bai, J. Tain, D. Talifu, K. Okitsu, A. Abulizi, Process optimization of esterification for deacidification in waste cooking oil: RSM approach and for biodiesel production assisted with ultrasonic and solvent, Fuel 2022, 318, 123697. DOI: https://doi.org/10.1016/j.fuel.2022.123697
- 9 M. Lawrinenko, D. A. Laird, The anion exchange capacity of biochar, Green Chem. 2015, 17 (9), 4628–4636. DOI: https://doi.org/10.1039/c5gc00828j
- 10 J. M. Jung, J. I. Oh, K. Baek, J. Lee, E. E. Kwon, Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst, Energy Convers. Manage. 2018, 165, 628–633. DOI: https://doi.org/10.1016/j.enconman.2018.03.096
- 11 M. U. H. Suzihaque, H. Alwi, K. U. Ibrahim, S. Abdullah, N. Haron, Biodiesel production from waste cooking oil: A brief review, Mater. Today: Proc. 2022, 63 (1), S490–S495. DOI: https://doi.org/10.1016/j.matpr.2022.04.527
- 12 R. C. Christian, A. D. João, L. S. José, Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market, Fuel Process. Technol. 2009, 90, 204–211. DOI: https://doi.org/10.1016/j.fuproc.2008.09.006
- 13 A. Giwa, A. Alabi, A. Yusuf, T. Olukan, A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria, Renewable Sustainable Energy Rev. 2017, 69, 620–641. DOI: https://doi.org/10.1016/j.rser.2016.11.160
- 14 N. Mansir, S. H. Teo, U. Ashid, M. I. Saiman, Y. P. Tan, G. A. Alsultan, Y. H. Taufiq-Yap, Modified waste eggshell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review, Renewable Sustainable Energy Rev. 2017, 82, 3645–3655. DOI: https://doi.org/10.1016/j.rser.2017.10.098
- 15 A. A. Babadi, S. Rahmati, R. Fakhlaei, B. Barati, S. Wang, W. Doherty, K. Ostrikov, Emerging technologies for biodiesel production: Processes challenges and opportunities, Biomass Energy 2022, 163, 106521. DOI: https://doi.org/10.1016/j.biombioe.2022.106521
- 16 S. Xuan, S. Lim, H. Chyuan, Y. Ling, State of the art review on the development of ultrasound–assisted catalytic transesterification process for biodiesel production, Fuel 2019, 235, 886–907. DOI: https://doi.org/10.1016/j.fuel.2018.08.021
- 17 S. Ramkumar, V. Kirubakaran, Biodiesel from vegetable oil as an alternative fuel for CI engine and feasibility study of thermal cracking: A critical review, Energy Convers. Manage. 2016, 118, 155–169. DOI: https://doi.org/10.1016/j.enconman.2016.03.071
- 18 J. Jeevahan, M. Chandrasekaran, G. B. Joseph, A. Poovannan, Experimental Investigation of the Influence of Isobutanol Addition On Engine Performance and Emissions Of A Direct Ignition Diesel Engine Fuelled By Biodiesel Blends Derived From Waste Vegetable Oil, Int. J. Ambient Energy 2017, 40 (2), 1–8. DOI: https://doi.org/10.1080/01430750.2017.1381158
- 19
N. Mansir, T.-Y. Y. Hin, Synthesis and characterization of solid heterogeneous catalyst for the production of biodiesel from high FFA waste cooking oil, Bayero J. Pure Appl. Sci.
2018, 10 (1), 62–66. DOI: https://doi.org/10.4314/bajopas.v10i1.13S
10.4314/bajopas.v10i1.13S Google Scholar
- 20 R. M. Joshi, M. J. Pegg, Flow properties of biodiesel fuel blends at low temperatures, Fuel 2007, 86 (1–2), 143–151. DOI: https://doi.org/10.1016/j.fuel.2006.06.005
- 21 F. A. Aderibigbe, S. I. Mustapha, L. T. Adewoye, I. A. Mohammed, A. B. Gbadegesin, F. E. Niyi, O. I. Olowu, A. G. Soretire, H. B. Saka, Qualitative role of heterogeneous catalysts in biodiesel production from Jatropha Curcas Oil, Biofuel Res. J. 2020, 7 (2), 1159–1169. DOI: https://doi.org/10.18331/BRJ2020.7.2.4
- 22
A. Ramli, M. Farooq, A. Naeem, S. Khan, M. Hummayun, A. Iqbal, L. A. Shah, Bifunctional Heterogeneous Catalysts for Biodiesel Production using Low–Cost Feedstocks: A Future Perspective, Front. Bioenergy Biofuels
2017, 285–298. DOI: https://doi.org/10.5772/65553
10.5772/65553 Google Scholar
- 23 H. Mazaheri, H. C. Ong, H. H. Masjuki, Z. Amini, M. D. Harrison, C. T. Wang, A. Alwi, Rice bran oil-based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell, Energy 2018, 144, 10–19. DOI: https://doi.org/10.1016/j.energy.2017.11.073
- 24 J. Nisar, R. Razaq, M. Farooq, M. Iqbal, R. A. Khan, M. Sayed, I. R. Rahman, Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as a catalyst, Renewable Energy 2017, 101, 111–119. DOI: https://doi.org/10.1016/j.renene.2016.08.048
- 25 G. T. Ang, K. T. Tan, K. T. Lee, Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production, Renewable Sustainable Energy Rev. 2014, 31, 61–70. DOI: https://doi.org/10.1016/j.rser.2013.11.004
- 26 A. Ben Hassen Trabelsi, K. Zaafouri, W. Baghdadi, S. Naoui, A. Ouerghi, Second generation biofuels production from waste cooking oil via pyrolysis process, Renewable Energy 2018, 126, 888–896. DOI: https://doi.org/10.1016/j.renene.2018.04.002
- 27 W. A. Wan Mahari, C. T. Chong, W. H. Lam, T. N. S. T. Anuar, N. L. Ma, M. D. Ibrahim, S. S. Lam, Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment, Energy Convers. Manage. 2018, 171, 1292–1301. DOI: https://doi.org/10.1016/j.enconman.2018.06.073
- 28 R. French, S. Czernik, Catalytic pyrolysis of biomass for biofuels production, Fuel Process. Technol. 2010, 91 (1), 25–32. DOI: https://doi.org/10.1016/j.fuproc.2009.08.011
- 29 P. Bora, J. Boro, L. J. Konwar, D. Deka, Formulation of microemulsion based hybrid biofuel from waste cooking oil – A comparative study with biodiesel, J. Energy Inst. 2016, 89 (4), 560–568. DOI: https://doi.org/10.1016/j.joei.2015.07.001
- 30
G. S. Nigatu, J. M. Marchetti, Biodiesel production technologies: Review, AIMS Energy
2017, 5 (3), 425–457. DOI: https://doi.org/10.3934/energy.2017.3.425
10.3934/energy.2017.3.425 Google Scholar
- 31 N. Phasukarratchai, Phase behaviour and biofuel properties of waste cooking oil-alcohol-diesel blending in microemulsion form, Fuel 2019, 243, 125–132. DOI: https://doi.org/10.1016/j.fuel.2019.01.003
- 32 J. Xu, J. Jiang, J. Zhao, Thermochemical conversion of triglycerides for production of drop-in liquid fuels, Renewable Sustainable Energy Rev. 2016, 58, 331–340. DOI: https://doi.org/10.1016/j.rser.2015.12.315
- 33 S. A. Kadapure, P. Kirti, S. Singh, S. Kokatnur, N. Hiremath, A. Variar, R. Chittaragi, Studies on process optimization of biodiesel production from waste cooking and palm oil, Int. J. Sustainable Eng. 2018, 11 (3), 167–172. DOI: https://doi.org/10.1080/19397038.2017.1420107
- 34 I. Reyero, G. Arzamendi, S. Zabala, L. M. Gandía, Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel, Fuel Process. Technol. 2015, 129, 147–155. DOI: https://doi.org/10.1016/jfuproc.2014.09.02.008
- 35 S. S. Lam, W. A. Wan Mahari, C. K. Cheng, R. Omar, C. T. Chong, H. A. Chase, Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon, Energy 2016, 115, 791–799. DOI: https://doi.org/10.1016/j.energy.2016.09.076
- 36 A. N. Phan, T. M. Phan, Biodiesel production from waste cooking oils, Fuel 2008, 87, 3490–3496. DOI: https://doi.org/10.1016/j.fuel.2008.07.008
- 37 Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, Overview of the production of biodiesel from waste cooking oil, Renewable Sustainable Energy Rev. 2013, 18, 184–193. DOI: https://doi.org/10.1016/j.rser.2012.10.016
- 38 L. Costarrosa, D. D. Leiva-Candia, A. Cubero-Atienza, J. Ruiz, M. Dorado, Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology, Energies 2018, 11 (2), 302. DOI: https://doi.org/10.3390/en11020302
- 39 A. Tangy, I. N. Pulidindi, I. N. Perkas, N. A. Gedanken, Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil, Bioresour. Technol. 2017, 224, 333–341. DOI: https://doi.org/10.1016/j.biortech.2016.10.068
- 40 M. D. Putra, C. Irawan, Udiantoro, Y. Ristianingsih, I. F. Nata, A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study, J. Cleaner Prod. 2018, 195, 1249–1258. DOI: https://doi.org/10.1016/j.jclepro.2018.06.010
- 41 W. A. Wan Mahari, C. T. Chong, W. H. Lam, T. N. S. T. Anuar, N. L. Ma, M. D. Ibrahim, S. S. Lam, Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment, Energy Convers. Manage. 2018, 171, 1292–1301. DOI: https://doi.org/10.1016/j.enconman.2018.06.073
- 42
N. Idun-Acquah, G. Y. Obeng, E. Mensah, Repetitive Use of Vegetable Cooking Oil and Effects on Physico-Chemical Properties – Case of Frying with Redfish, Sci. Technol.
2016, 6 (1), 8–14. DOI: https://doi.org/10.5923/j.scit.20160601.02
10.5923/j.scit.20160601.02 Google Scholar
- 43 J. Xu, J. Jiang, J. Zhao, Thermochemical conversion of triglycerides for production of drop–in liquid fuels, Renewable Sustainable Energy Rev. 2016, 58, 331–340. DOI: https://doi.org/10.1016/j.rser.2015.12.315
- 44 R. L. McCormick, M. S. Graboski, T. L. Alleman, A. M. Herring, K. S. Tyson, Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine, Environ Sci. Technol. 2001, 35 (9), 1742–1747. DOI: https://doi.org/10.1021/es001636t
- 45 M. Suresh, C. P. Jawahar, A . Richard, A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends, Renewable Sustainable Energy Rev. 2018, 92, 38–49. DOI: https://doi.org/10.1016/j.rser.2018.04.048
- 46 D. S. Kim, M. Hanifzadeh, A. Kumar, The trend of biodiesel feedstock and its impact on biodiesel emission characteristics, Environ. Prog. Sustainable Energy 2018, 37 (1), 7–19. DOI: https://doi.org/10.1002/ep.12800
- 47
W. H. Foo, S. S. N. Koay, D. Y. Y. Tang, W. Y. Chia, K. W. Chew, L. P. Show, Safety control of waste cooking oil: transforming hazard into multifarious products with available pretreatment processes, Food Mater. Res.
2022, 2 (1), 1–11. DOI: https://doi.org/10.48130/FMR-2022-0001
10.48130/FMR-2022-0001 Google Scholar
- 48
I. D. Casallas, E. Carvajal, E. Mahecha, C. Castrillón, H. Gómez, C. López, Malagón-D. Romero, Pretreatment of waste cooking oils for biodiesel production, Chem. Eng. Trans.
2018, 65, 385–390. DOI: https://doi.org/10.3303/CET1865065
10.3303/CET1865065 Google Scholar
- 49
O. A. Falowo, O. Babatunde, E. T. Abiola, A. T. Olaiya, O. O. Oyekola, E. Betiku, Green heterogeneous base catalyst from ripe and unripe plantain peels mixture for the transesterification of waste cooking oil, Chem. Eng. J.
2022, 10, 1000293. DOI: https://doi.org/10.1016/j.eta.2022.100293
10.1016/j.eta.2022.100293 Google Scholar
- 50 L. T. Schneider, G. Bonassa, H. J. Alves, T. R. Weiser Meier, E. P. Frigo, J. G. Teleken, Use of rice husk in waste cooking oil pretreatment, Environ Technol. 2019, 40 (5), 594–604. DOI: https://doi.org/10.1080/09593330.2017.1397772
- 51 M. Li, Y. Zheng, Y. Chen, X. Zhu, Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk, Bioresour. Technol. 2014, 154, 345–348. DOI: https://doi.org/10.1016/j.biotech.2013.12.070
- 52 E. G. Al-Sakkari, M. G. Mohammed, A. A. Elozeiri, O. M. Abdeldayem, M. M. Habashy, E. Ong, E. R. Rene, I. Ismail, I. Ashour, Comparative Technoeconomic Analysis of Using Waste and Virgin Cooking Oils for Biodiesel Production, Front. Energy Res. 2020, 8, 583357. DOI: https://doi.org/10.3389/fenrg.2020.583357
- 53
S. A. El-Gharabawy, Cost Analysis for Biodiesel Production from Waste Cooking Oil Plant in Egypt,, Int. J. Smart Grid
2017, 1 (1), 16–25. DOI: https://doi.org/10.20508/ijsmartgrid.v1i1.2.g2
10.20508/ijsmartgrid.v1i1.2.g2 Google Scholar
- 54
L. Yanbing, X. Yang, A. Adamu, Z. Zongyuan, Economic evaluation and production process simulation of biodiesel production from waste cooking oil, Curr. Res. Green Sustainable Chem.
2021, 4, 100091. DOI: https://doi.org/10.1016/j.crgsc.2021.100091
10.1016/j.crgsc.2021.100091 Google Scholar
- 55 S. K. Karmee, R. D. Patria, C. S. K. Lin, Economic evaluation of biodiesel production from waste cooking oil: A case study of Hong Kong, Int. J. Mol. Sci. Technol. 2015, 16, 4362–4371. DOI: https://doi.org/10.3390/ijms16034362
- 56 H. Homa, A. Nizami, S. Kalogirou, V. K. Gupta, Y. Park, A. Fallahi, A. Sulaiman, M. Ranjbari, H. Rahnama, M. Aghbashlo, W. Peng, M. Tabatabaei, Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review, Renewable Sustainable Energy Rev. 2022, 161, 112411. DOI: https://doi.org/10.1016/j.rser.2022.112411
- 57 J. Calero, D. Luna, E. D. Sancho, C. Luna, F. M. Bautista, A. A. Romero, C. Verdugo-Escamilla, An overview of glycerol–free processes for the production of renewable liquid biofuels, applicable in diesel engines, Renewable Sustainable Energy Rev. 2015, 42, 1437–1452. DOI: https://doi.org/10.1016/j.rser.2014.11.007
- 58 N. Gharat, V. K. Rathod, Ultrasound-assisted enzyme-catalyzed transesterification of waste cooking oil with dimethyl carbonate, Ultrason. Sonochem. 2012, 20 (3), 900–905. DOI: https://doi.org/10.1016/j.ultsonch.2012.10.011
- 59 M. Ganesh, R. G. Parag, B. P. Aniruddha, Intensified synthesis of biodiesel using hydrodynamic cavitation reactor based on the interesterification of waste cooking oil, Fuel 2014, 137, 285–292. DOI: https://doi.org/10.1016/j.fuel.2014.08.013
- 60 W. Li, Q. Dang, R. C. Brown, D. Laird, M. M. Wright, The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon-negative energy, Bioresour. Technol. 2017, 241, 959–968. DOI: https://doi.org/10.1016/j.biortech.2017.06.049
- 61 H. Esmaeili, A critical review on the aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts, Fuel Process. Technol. 2022, 230 (1), 107224. DOI: https://doi.org/10.1016/j.fuproc.2022.107224
- 62 G. R. Moradi, M. Mohadesi, M. Ghanbari, M. J. Moradi, S. Hosseini, Y. Davoodbeygi, Kinetic comparison of two basic heterogeneous catalysts obtained from sustainable resources for transesterification of waste cooking oil, Biofuel Res. J. 2015, 2 (2), 236–241. DOI: https://doi.org/10.18331/BRJ2015.2.2.5
- 63 W. Wu, Y. Li, H. Li, W. Zhao, S. Yang, Acid-Base Bifunctional Hf Nanohybrids Enable High Selectivity in the Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone, Catalysts 2018, 8 (7), 264. DOI: https://doi.org/10.3390/catal8070264
- 64
J. M. Marchetti, N. G. Shemelis, Biodiesel Production of Technologies: Review, Energy
2017, 5 (3), 425–457. DOI: https://doi.org/10.3934/energy.2017.3.425
10.3934/energy.2017.3.425 Google Scholar
- 65 A. Baghban, Computational modeling of biodiesel production using supercritical methanol, Energy Sources, Part A 2018, 41 (1), 1–7. DOI: https://doi.org/10.1080/15567036.2017.1344748
- 66 Y. M. Sani, W. M. A. W. Daud, A. R. Abdul Aziz, Activity of solid acid catalysts for biodiesel production: A critical review, Appl. Catal., A 2014, 470, 140–161. DOI: https://doi.org/10.1016/j.apcata.2013.10.052
- 67 M. J. Shu, J. Gao, Z. Nawaz, Y. Liao, D. Wang, J. Wang, Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon–based solid acid catalyst, Appl. Energy 2010, 87 (8), 2589–2596. DOI: https://doi.org/10.1016/j.apenergy.2010.03.024
- 68 H. Wang, J. Covarrubias, H. Prock, X. Wu, D. Wang, S. H. Bossmann, Acid-functionalized Magnetic Nanoparticle as Heterogeneous Catalysts for Biodiesel Synthesis, J. Phys. Chem. 2015, 119 (46), 26020–26028. DOI: https://doi.org/10.1021/acs.jpcc.5b08743
- 69 S. Furuta, H. Matsuhashi, K. Arata, Biodiesel fuel production with solid superacid catalysis in a fixed bed reactor under atmospheric pressure, Catal. Commun. 2004, 5, 721–723. DOI: https://doi.org/10.1016/j.catcom.2004.09.001
- 70 D. Rattanaphra, A. Harvey, P. Srinophakun, Simultaneous Conversion of Triglyceride / Free Fatty Acid Mixtures into Biodiesel Using Sulfated Zirconia, Top. Catal. 2010, 53 (11–12), 773–782. DOI: https://doi.org/10.1007/s11244-010-9463-2
- 71 K. Ramachandran, P. Sivakumar, T. Suganya, S. Renganathan, Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst, Bioresour. Technol. 2011, 102 (15), 7289–7293. DOI: https://doi.org/10.1016/j.biortech.2011.04.100
- 72 M. Otadi, A. M. Shahraki, M. Goharrokhi, F. Bandarchian, Reduction of Free Fatty Acids of Waste Oil by Acid, Procedia Eng. 2011, 18, 168–174. DOI: https://doi.org/10.1016/j.proeng.2011.11.027
- 73 S. H. Shuit, K. T. Lee, A. H. Kamaruddin, S. Yusup, Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel, Fuel 2010, 89 (2), 527–530. DOI: https://doi.org/10.1016/j.fuel.2009.07.011
- 74 M. Mohadesi, B. Aghel, A. Gouran, M. H. Razmehgir, Transesterification of waste cooking oil using clay/CaO as a Solid base Catalyst, Energy 2022, 242, 122536. DOI: https://doi.org/10.1016/j.energy.2021.122536
- 75 S. B. Kumar et al., Use of Waste Frying Oil as C. I. Engine Fuel: A Review, Open Access Library J. 2018, 4, 1–33. DOI: https://doi.org/10.4236/oalib.1103958
- 76 A. Birla, B. Singh, S. N. Upadhyay, Y. C. Sharma, Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell, Bioresour. Technol. 2012, 106, 95–100. DOI: https://doi.org/10.1016/j.biortech.2011.11.065
- 77 N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, Simultaneous development of biodiesel synthesis and fuel quality via continuous supercritical process with reactive co-solvent, Fuel 2019, 237, 117–125. DOI: https://doi.org/10.1016/j.fuel.2018.09.077
- 78 M. Farooq, A. Ramli, A. Naeem, Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones, Renewable Energy 2015, 76, 362–368. DOI: https://doi.org/10.1016/j.renene.2014.11.042
- 79 R. Chakraborty, S. Bepari, A. Banerjee, Application of calcined waste fish (Labeorohita) scale as a low–cost heterogeneous catalyst for biodiesel synthesis, Bioresour. Technol. 2011, 102 (3), 3610–3618. DOI: https://doi.org/10.1016/j.biortech.2010.10.123
- 80 Y. Ulusoy, R. Arslan, Y. Tekin, A. Sürmen, A. Bolat, R. Şahin, Investigation of performance and emission characteristics of waste cooking oil as biodiesel in a diesel engine, Pet. Sci. 2018, 15 (2), 396–404. DOI: https://doi.org/10.1007/s12182-018-0225-2
- 81 Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, Overview of the production of biodiesel from waste cooking oil, Renewable Sustainable Energy Rev. 2013, 18, 184–193. DOI: https://doi.org/10.1016/j.rser.2012.10.016
- 82 A. Piker, B. Tabah, N. Perkas, A. A. Gedanken, Green and low-cost room temperature biodiesel production method from waste oil using eggshells as a catalyst, Fuel 2016, 182, 34–41. DOI: https://doi.org/10.1016/j.fuel.2016.05.078
- 83 S. Sirisomboonchai, M. Abuduwayiti, G. Guan, C. Samart, Biodiesel production from waste cooking oil using calcined scallop shell as a catalyst, Energy Convers. Manage. 2015, 95, 242–247. DOI: https://doi.org/10.1016/j.enconman.2015.02.044
- 84 R. Rezaei, M. Mohadesi, G. R. Moradi, Optimization of biodiesel production using waste mussel shell catalyst, Fuel 2013, 109, 534–541. DOI: https://doi.org/10.1016/j.fuel.2013.03.004
- 85 N. Girish, S. P. Niju, K. Mohamed, M. Sheriffa, Utilization of a cost-effective solid catalyst derived from natural white bivalve clamshell for transesterification of waste frying oil, Fuel 2013, 111, 653–658. DOI: https://doi.org/10.1016/j.fuel.2013.03.069
- 86 T. Maneerung, S. Kawi, Y. Dai, C. H. Wang, Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure, Energy Convers. Manage. 2016, 123, 487–497. DOI: https://doi.org/10.1016/j.enconman.2016.06.071
- 87 H. Mazaheri, H. C. Ong, H. H. Masjuki, Z. Amini, M. D. Harrison, C. T. Wang, A. Alwi, Rice bran oil-based biodiesel production using calcium oxide catalyst derived from Chicoreusbrunneus shell, Energy 2018, 144, 10–19. DOI: https://doi.org/10.1016/j.energy.2017.11.073
- 88 S. Sankaranarayanan, C. A. Antonyraj, S. Kannan, Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts, Bioresour. Technol. 2012, 109, 57–62. DOI: https://doi.org/10.1016/j.biortech.2012.01.022
- 89 A. Zuliani, F. Ivars, R. Luque, Advances in Nanocatalyst Design for Biofuel Production, Chem.Cat. Chem. 2018, 10 (9), 1968–1981. DOI: https://doi.org/10.1002/cctc.201701712
- 90 A. S. Elgharbawy, R. M. Ali, Techno-economic assessment of biodiesel production using natural minerals rocks as a heterogeneous catalyst vis conventional and ultrasonic techniques, Renewable Energy. 2022, 191, 161–175. DOI: https://doi.org/10.1016/j.renene.2022.04.020
- 91 L. Maina, A. Rabiu, T. Ojumu, O. Oyekola, An investigation of the potential of a bifunctional catalyst in biodiesel production from low-cost feedstocks, Waste Biomass Valorization 2022, 1–17. DOI: https://doi.org/10.1007/s12649-022-01862-2
- 92 J. N. Raham, R. Anita, J. Khairulazhar, U. Yoshimitsu, Tailoring the surface area and the acid-base properties of ZrO2 for biodiesel production from Nannochloropsis sp., Sci. Rep. 2019, 9. DOI: https://doi.org/10.1038/s41598-019-52771-9
- 93 W. N. N. W. Wan Omar, N. A. S. Amin, Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst, Fuel Process. Technol. 2011, 92 (12), 2397–2405. DOI: https://doi.org/10.1016/j.fuproc.2011.08.009
- 94 D. Y. C. Leung, X. Wu, M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Appl. Energy 2010, 87 (4), 1083–1095. DOI: https://doi.org/10.1016/j.apenergy.2009.10.006
- 95
A. Ramli, M. Farooq, A. Naeem, S. Khan, M. Hummayun, A. Iqbal, L. A. Shah, Bifunctional Heterogeneous Catalysts for Biodiesel Production using Low–Cost Feedstocks: A Future Perspective, Front. Bioenergy Biofuels
2017, 285–298. DOI: https://doi.org/10.5772/65553
10.5772/65553 Google Scholar
- 96 A. Macario, G. Giordano, B. Onida, D. Cocina, A. Tagarelli, A. M. Giuffrè, Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst, Appl. Catal., A. 2010, 378 (2), 160–168. DOI: https://doi.org/10.1016/j.apcata.2010.02.016
- 97 Z. D. Yigezu, K. Muthukumar, Catalytic cracking of vegetable oil with metal oxides for biofuel production, Energy Convers. Manage. 2014, 84, 326–333. DOI: https://doi.org/10.1016/j.enconman.2014.03.084
- 98 A. Al-saadi, B. Mathan, Y. He, Esterification and Transesterification over SrO-ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production, Renewable Energy 2020, 158, 388–399. DOI: https://doi.org/10.1016/j.renene.2020.05.171
- 99 F. A. Aderibigbe, H. B. Saka, S. I. Mustapha, I. A. Mohammed, M. K. Amosa, A. G. Adeniyi, E. O. Ajala, E. O. B. O. Solomon, Kinetic study of the transesterification of waste cooking oil, Nigerian J. Eng. Sci. Res. 2022, 5 (1), 65–75.
- 100 M. Pirouzmand, M. M. Anakhatoon, Z. Ghasemi, One-step biodiesel production from waste cooking oils over metal incorporated MCM-41; positive effect of a template, Fuel 2018, 216, 296–300. DOI: https://doi.org/10.1016/j.fuel.2017.11.138
- 101 S. Chaveanghong, S. M. Smith, C. B. Smith, A. Luengnaruemitchai, S. Boonyuen, Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten-loaded bovine bone under mild conditions, Renewable Energy 2018, 126, 156–162. DOI: https://doi.org/10.1016/j.renene.2018.03.036
- 102 M. Farooq, A. Ramli, A. Naeem, S. K. Muhammad, Effect of different metal oxides on the catalytic activity of γ-Al2O3-MgO supported bifunctional heterogeneous catalyst in biodiesel production from WCO, RSC Adv. 2016, 2, 1–33. DOI: https://doi.org/10.1039/C5RA18146A
- 103 F. H. Alhassan, U. Rashid, Y. H. Taufiq-Yap, Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42-/ZrO2nanoparticle solid catalyst, Fuel 2015, 142, 38–45. DOI: https://doi.org/10.1016/j.fuel.2014.10.038
- 104 N. Kondamudi, S. K. Mohapatra, M. Misra, Quintinite as a bifunctional heterogeneous catalyst for biodiesel synthesis, Appl. Catal., A 2011, 393 (1–2), 36–43. DOI: https://doi.org/10.1016/j.apcata.2010.11.025
- 105 A. Macario, G. Giordano, Catalytic conversion of renewable sources for biodiesel production: a comparison between biocatalysts and inorganic catalysts, Catal. Lett. 2013, 143 (2).
- 106
F. N. Ani, N. H. Said, M. F. M. Said, Review of the production of biodiesel from waste cooking oil using a solid catalyst, J. Mech. Eng. Sci.
2012, 8, 1302–1311. DOI: https://doi.org/10.15282/jmes.8.2015.5.0127
10.15282/jmes.8.2015.5.0127 Google Scholar
- 107
F. C. Guerrero, A. Guerrero-Romero, E. F. Andres, Biodiesel Production from Waste Cooking Oil, Biodiesel Feedstocks Process. Technol.
2011, 3, 25–44. DOI: https://doi.org/10.5772/25313
10.5772/25313 Google Scholar
- 108 M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, N. Ashwath, Biofuels production through biomass pyrolysis -- A technological review, Energies 2012, 5 (12), 4952–5001. DOI: https://doi.org/10.3390/en5124952
- 109 M. Rehan, J. Gardy, A. Demirbas, U. Rashid, W. M. Budzianowski, D. Pant, A. S. Nizami, Waste to biodiesel: A preliminary assessment for Saudi Arabia, Bioresour. Technol. 2018, 250, 17–25. DOI: https://doi.org/10.1016/j.biortech.2017.11.024
- 110
N. C. Amulah, Integrating Renewable Energy into Nigeria's Energy Supply Mix, J. Renewable Energy Sustainable Dev.
2022, 8 (1), 11–19. DOI: https://doi.org/10.21622/RESD.2022.08.1.011
10.21622/resd.2022.08.1.011 Google Scholar