Mechanism and Techno-Economic Analysis of the Electrochemical Process
Monica Ranga
Indian Institute of Technology Roorkee, Department of Chemical Engineering, 247667 Roorkee, Uttarakhand, India
Search for more papers by this authorCorresponding Author
Prof. Shishir Sinha
Indian Institute of Technology Roorkee, Department of Chemical Engineering, 247667 Roorkee, Uttarakhand, India
Correspondence: Prof. Shishir Sinha ([email protected]), Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.Search for more papers by this authorMonica Ranga
Indian Institute of Technology Roorkee, Department of Chemical Engineering, 247667 Roorkee, Uttarakhand, India
Search for more papers by this authorCorresponding Author
Prof. Shishir Sinha
Indian Institute of Technology Roorkee, Department of Chemical Engineering, 247667 Roorkee, Uttarakhand, India
Correspondence: Prof. Shishir Sinha ([email protected]), Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.Search for more papers by this authorAbstract
The textile industry utilizes numerous chemicals ranging from solvents to resins and caustic soda to bleach, having a harsh environmental impact. A large amount of colored dye in wastewater is released. Non-biodegradable heavy metals and chlorine accumulate in organs of marine and terrestrial life, leading to various diseases. So, there is an urgent need to treat textile wastewater. Up to date, techno-economic analyses of all electrochemical processes have not been reviewed for textile wastewater treatment. In this review, the focus is on the tertiary treatment methods, mainly on electrochemical treatments, i.e., electrocoagulation, electro-Fenton, electrooxidation, photoelectrochemical (PEC) process, and solar electrophoto-Fenton process (SPEF) with their mechanisms and techno-economic analyses. SPEF treatment was found to be advantageous in terms of efficiency and economic perspective as it utilizes solar energy instead of electrical energy and the cost of the PEC process can also be recovered by the generation of hydrogen.
References
- 1 C. R. Holkar et al., J. Environ. Manage. 2016, 182, 351–366. DOI: https://doi.org/10.1016/j.jenvman.2016.07.090
- 2 S. Vineta et al., Int. Sci. Conf. Unitech Gabrovo 2014, 248–252.
- 3
P. Senthil Kumar, A. Saravanan, Sustainable Fibres Text.
2017, 323–346. DOI: https://doi.org/10.1016/B978-0-08-102041-8.00011-1
10.1016/B978-0-08-102041-8.00011-1 Google Scholar
- 4 D. R. Manenti et al., Environ. Sci. Pollut. Res. 2014, 22 (2), 833–845. DOI: https://doi.org/10.1007/s11356–014–2767–1
- 5
B. Lellis et al., Biotechnol. Res. Innov.
2019, 3 (2), 275–290. DOI: https://doi.org/10.1016/j.biori.2019.09.001
10.1016/j.biori.2019.09.001 Google Scholar
- 6
S. Arslan et al., Text. Wastewater Treat.
2016, 1–28. DOI: https://doi.org/10.5772/64140
10.5772/64140 Google Scholar
- 7
M. S. Miah, J. Chem. Eng.
2013, 27 (1), 32–36. DOI: https://doi.org/10.3329/jce.v27i1.15855
10.3329/jce.v27i1.15855 Google Scholar
- 8 T. Hussain, A. Wahab, J. Cleaner Prod. 2018, 198, 806–819. DOI: https://doi.org/10.1016/j.jclepro.2018.07.051
- 9 C. A. Sevillano et al., Entropy 2021, 23 (2), 1–23. DOI: https://doi.org/10.3390/e23020145
- 10
H. Mirbolooki, R. Amirnezhad, A. R. Pendashteh, J. Appl. Res. Technol.
2017, 15 (2), 167–172. DOI: https://doi.org/10.1016/j.jart.2017.01.012
10.1016/j.jart.2017.01.012 Google Scholar
- 11 E. Butler et al., Appl. Water Sci. 2017, 7 (1), 31–51. DOI: https://doi.org/10.1007/s13201-015-0285-z
- 12 D. Chandran, Int. J. Sci. Eng. Res. 2015, 1, 392–403.
- 13 R. Rashid et al., Environ. Sci. Pollut. Res. 2021, 28 (8), 9050–9066. DOI: https://doi.org/10.1007/s11356-021-12395-x
- 14 M. Desai, M. Mehta, Int. J. Eng. Sci. Res. Technol. 2014, 3 (3), 1–6.
- 15 S. Hube et al., Sci. Total Environ. 2020, 710, 136375. DOI: https://doi.org/10.1016/j.scitotenv.2019.136375
- 16
M. Stoller et al., Chem. Eng. Trans.
2016, 47, 409–414. DOI: https://doi.org/10.3303/CET1647069
10.3303/CET1647069 Google Scholar
- 17 S. Al-Amshawee et al., Chem. Eng. J. 2020, 380, 122231. DOI: https://doi.org/10.1016/j.cej.2019.122231
- 18 A. Malovanyy et al., Desalination 2013, 329, 93–102. DOI: https://doi.org/10.1016/j.desal.2013.09.009
- 19 Y. Bai, B. Bartkiewicz, Polish J. Environ. Stud. 2009, 18 (6), 1191–1195.
- 20
F. B. A. Rahman, M. Akter, Int. J. Waste Resour.
2016, 6, 3. DOI: https://doi.org/10.4172/2252-5211.1000244
10.4172/2252?5211.1000244 Google Scholar
- 21 A. R. Khataee, M. B. Kasiri, J. Mol. Catal. A: Chem. 2010, 328 (1–2), 8–26. DOI: https://doi.org/10.1016/j.molcata.2010.05.023
- 22 A. Salama et al., Appl. Nanosci. 2018, 8 (1–2), 155–161. DOI: https://doi.org/10.1007/s13204-0180660-9
- 23 C. Singaravadivel, M. Vanitha, N. Balasubramanian, J. Electrochem. Sci. Technol. 2012, 3 (1), 44–49. DOI: https://doi.org/10.5229/jecst.2012.3.1.44
- 24 O. M. Rodríguez-Narváez et al., Curr. Opin. Electrochem. 2021, 29, 100806. DOI: https://doi.org/10.1016/j.coelec.2021.100806
- 25 X. Wang, J. Jiang, W. Gao, Water Sci. Technol. 2022, 85 (7), 2076. DOI: https://doi.org/10.2166/wst.2022.088
- 26 M. F. Chowdhury et al., J. Mol. Liq. 2020, 318, 114061. DOI: https://doi.org/10.1016/j.molliq.2020.114061
- 27 P. V. Nidheesh et al., Sep. Purif. Technol. 2022, 293, 121115. DOI: https://doi.org/10.1016/j.seppur.2022.12111
- 28 L. Sun, Y. Mo, L. Zhang, Chemosphere 2022, 294, 133801. DOI: https://doi.org/10.1016/j.chemosphere.2022.133801
- 29 T. L. Yusuf, RSC Adv. 2022, 12, 26176. DOI: https://doi.org/10.1039/d2ra04236c
- 30 K. Paździor, L. Bilińska, S. Ledakowicz, Chem. Eng. J. 2019, 376, 120597. DOI: https://doi.org/10.1016/j.cej.2018.12.057
- 31 J. Y. Wu et al., J. Water Process Eng. 2020, 38, 101609. DOI: https://doi.org/10.1016/j.jwpe.2020.101609
- 32 S. F. Ahmed et al. J. Hazard. Mater. 2020, 416, 125912. DOI: https://doi.org/10.1016/j.jhazmat.2021.125912
- 33 L. Bilińska, M. Gmurek, Water Res. Ind. 2021, 26, 100160. DOI: https://doi.org/10.1016/j.wri.2021.100160
- 34
Membranes for Industrial Wastewater Recovery and Re-use (Eds: S. Judd, B. Jefferson), Elsevier
2003.
10.1016/B978-185617389-6/50003-5 Google Scholar
- 35 W. Li et al., J. Eng. Fiber. Fabr. 2020, 15. DOI: https://doi.org/10.1177/1558925019900663
- 36 K. L. Gandhi, Yarn Preparation for Weaving: Sizing, 2nd ed. Elsevier Ltd., 2019.
- 37 S. Kovačević et al., Polymers 2020, 12, 6. DOI: https://doi.org/10.3390/POLYM12061251
- 38 R. Aprilliyani et al., IEEE Access. 2020, 8, 63295–63301. DOI: https://doi.org/10.1109/ACCESS.2020.2984934
- 39 P. Kumar, B. Prasad, S. Chand, J. Hazard. Mater. 2009, 163 (1), 433–440. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.114
- 40 Q. Jiang et al., J. Cleaner Prod. 2019, 210, 646–652. DOI: https://doi.org/10.1016/j.jclepro.2018.11.034
- 41 C. Y. Lin et al. Int. J. Hydrogen Energy. 2017, 42 (17), 12153–12158. DOI: https://doi.org/10.1016/j.ijhydene.2017.03.184
- 42
M. S. Miah, J. Chem. Eng.
2013, 27 (1), 32–36. DOI: https://doi.org/10.3329/jce.v27i1.15855
10.3329/jce.v27i1.15855 Google Scholar
- 43 S. M. A. Hoque, A. Y. M. A. Azim, Am. J. Eng. Res. 2016, 5 (6), 167–182.
- 44 S. K. B. C. Panda, S. Mukhopadhyay, J. Sheikh, J. Text. Inst. 2020, 111 (7), 1064–1075. DOI: https://doi.org/10.1080/00405000.2019.1682957
- 45
S. A. S. Chatha, M. Asgher, H. M. N. Iqbal, Environ. Sci. Pollut. Res.
2017, 4 (16), 14005–14018. DOI: https://doi.org/10.1007/s11356-017-8998-1
10.1007/s11356-017-8998-1 Google Scholar
- 46 A. Al-Kdasi, A. Idris, K. Saed, C. T. Guan, Glob. Nest J. 2004, 6 (1), 222–230.
- 47 S. V. Mohan, Y. V. Bhaskar, J. Karthikeyan, Int. J. Environ. Pollut. 2004, 21 (3), 211–222. DOI: https://doi.org/10.1504/IJEP.2004.004190
- 48 L. Jajpura, R. Nayak, in Handbook of textile and industrial dyeing: principles, processes and types of dyes (Ed: M. Clark), Woodhead Publishing, Cambridge 2011.
- 49 Z. Hussain et al., Sci. Total Environ. 2019, 685, 370–379. DOI: https://doi.org/10.1016/j.scitotenv.2019.05.414
- 50 F. A. Rodríguez et al. Environ. Technol. 2013, 34 (5), 573–583. DOI: https://doi.org/10.1080/09593330.2012.706645
- 51 Y. Feng et al. Environ. Sci. Water Res. Technol. 2016, 2 (5), 800–831. DOI: https://doi.org/10.1039/c5ew00289c
- 52 C. Gao et al. J. Mol. Liq. 2020, 297, 111783. DOI: https://doi.org/10.1016/j.molliq.2019.111783
- 53 R. Lafi et al., Chem. Eng. Process. Process Intensif. 2018, 132, 105–113. DOI: https://doi.org/10.1016/j.cep.2018.08.010
- 54 X. A. Ning et al., Environ. Res. 2014, 132, 112–118. DOI: https://doi.org/10.1016/j.envres.2014.03.041
- 55 T. Xu et al., J. Cleaner Prod. 2018, 178, 305–313. DOI: https://doi.org/10.1016/j.jclepro.2017.12.259
- 56 Y. Yuan et al., Ecotoxicol. Environ. Saf. 2020, 193, 110257. DOI: https://doi.org/10.1016/j.ecoenv.2020.110257
- 57 J. S. Ratthore, V. Choudhary, S. Sharma, Eur. Chem. Bull. 2014, 3 (8), 805–808.
- 58
A. K. Roy Choudhury, Princ. Text. Finish.
2017, 1–19. DOI: https://doi.org/10.1016/b978-0-08-100646-7.00001-1
10.1016/b978?0?08?100646?7.00001?1 Google Scholar
- 59 K. Singha, S. Maity, P. Pandit, in Frontiers of Textile Materials (Eds: M. Shabbir, S. Ahmed, J. N. Sheikh), Wiley, New York 2020, 291–308. DOI: https://doi.org/10.1002/9781119620396.ch12
- 60 S. Metintas, G. Ak, M. Metintas, Arch. Environ. Occup. Health 2019, 74, 76–84. DOI: https://doi.org/10.1080/19338244.2018.1467873
- 61 N. H. Torres et al., Chemosphere 2019, 236, 124309. DOI: https://doi.org/10.1016/j.chemosphere.2019.07.040
- 62 R. F. dos Santos et al., Environ. Monit. Assess. 2018, 190 (11), 693. DOI: https://doi.org/10.1007/s10661-018-7068-6
- 63 U. H. Siddiqua et al., J. Mol. Liq. 2017, 241, 839–844. DOI: https://doi.org/10.1016/j.molliq.2017.04.057
- 64 S. Mahmood et al., Soil Environ. 2011, 30 (1), 7–12.
- 65
S. Arslan et al., Text. Wastewater Treat.
2016, 1–28. DOI: https://doi.org/10.5772/64140
10.5772/64140 Google Scholar
- 66 T. Hussain, A. Wahab, J. Cleaner Prod. 2018, 198, 806–819. DOI: https://doi.org/10.1016/j.jclepro.2018.07.051
- 67 Ö. Kahraman, İ. Şimşek, J. Cleaner Prod. 2020, 267, 122168. DOI: https://doi.org/10.1016/j.jclepro.2020.122168
- 68 M. Sala, M. C. Gutiérrez-Bouzán, Int. J. Photoenergy 2012, 2012, 629103. DOI: https://doi.org/10.1155/2012/629103
- 69 S. Sundarapandiyan et al., J. Hazard. Mater. 2010, 180 (1–3), 197–203. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.013
- 70 M. Bayramoglu, M. Eyvaz, M. Kobya, Chem. Eng. J. 2007, 128 (2–3), 155–161. DOI: https://doi.org/10.1016/j.cej.2006.10.008
- 71 V. Khandegar, A. K. Saroha, J. Environ. Manage. 2013, 128, 949–963. DOI: https://doi.org/10.1016/j.jenvman.2013.06.043
- 72 G. Jing et al., Environ. Sci.: Water Res. Technol. 2021, 7, 1177. DOI: https://doi.org/10.1039/d1ew00158b
- 73 S. Bener et al., Process Saf. Environ. Prot. 2019, 129, 47–54. DOI: https://doi.org/10.1016/j.psep.2019.06.010
- 74 M. T. Oliveira et al., Int. J. Environ. Sci. Technol. 2019, 17 (3), 1657–1662. DOI: https://doi.org/10.1007/s13762-019-02574-2
- 75 A. Pieczyńska et al., Int. J. Environ. Sci. Technol. 2019, 16 (2), 929–942. DOI: https://doi.org/10.1007/s13762-018-1704-0
- 76 C. E. Lach et al., J. Water Process Eng. 2022, 45, 102485. DOI: https://doi.org/10.1016/j.jwpe.2021.102485
- 77 M. Bayramoglu et al., Chem. Eng. J. 2007, 128, 155–161. DOI: https://doi.org/10.1016/j.cej.2006.10.008
- 78 M. Elazzouzi, K. Haboubi, M. S. Elyoubi, Mater. Today: Proc. 2019, 13, 549–555.
- 79
M. Taheri, Cleaner Chem. Eng.
2022, 2, 10000. DOI: https://doi.org/10.1016/j.clce.2022.100007
10.1016/j.clce.2022.100007 Google Scholar
- 80 E. Kavitha, Int. J. Eng. Res. Appl. 2012, 2 (6), 444–451.
- 81 J. Qiao, Y. Xiong, J. Water Process Eng. 2021, 44, 102308. DOI: https://doi.org/10.1016/j.jwpe.2021.102308
- 82 N. Mohan, N. Balasubramanian, C. A. Basha, J. Hazard. Mater. 2007, 147 (1–2), 644–651. DOI: https://doi.org/10.1016/j.jhazmat.2007.01.063
- 83 A. A. Babaei et al., Water Sci. Technol. 2017, 75 (7), 1732–1742. DOI: https://doi.org/10.2166/wst.2017.049
- 84 M. S. Anantha et al., Environ. Technol. Innov. 2020, 17, 100612. DOI: https://doi.org/10.1016/j.eti.2020.100612
- 85 M. A. Sandoval et al., ChemistrySelect 2019, 4 (47), 13856–13866. DOI: https://doi.org/10.1002/slct.201903150
- 86 R. E. Palma-Goyes et al., J. Environ. Chem. Eng. 2018, 69 (2), 3010–3017. DOI: https://doi.org/10.1016/j.jece.2018.04.035
- 87 J. Zou et al., Chemosphere 2017, 171, 332–338. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.065
- 88 M. C. Okur, Chem. Eng. Res. Des. 2022, 183, 398–410. DOI: https://doi.org/10.1016/j.cherd.2022.05.016
- 89 L. Feng. Sep. Purif. Technol. 2022, 285, 120314. DOI: https://doi.org/10.1016/j.seppur.2021.120314
- 90 A. R. Picos-Benítez et al., Process Saf. Environ. Protect. 2020, 143, 36–44. DOI: https://doi.org/10.1016/j.psep.2020.06.020
- 91 R. Stirling et al., Electrochim. Acta. 2020, 338, 135874. DOI: https://doi.org/10.1016/j.electacta.2020.135874
- 92 K. Ramesh et al., J. Environ. Chem. Eng. 2021, 9, 106289. DOI: https://doi.org/10.1016/j.jece.2021.106289
- 93 A. Y. Goren et al., ACS Omega 2022, 7, 32640–32652. DOI: https://doi.org/10.1021/acsomega.2c04304
- 94 S. Xavier et al., Desalin. Water Treat. 2015, 53 (1), 109–118. DOI: https://doi.org/10.1080/19443994.2013.844083
- 95 S. Şahinkaya, J. Ind. Eng. Chem. 2013, 19 (2), 601–605. DOI: https://doi.org/10.1016/j.jiec.2012.09.023
- 96 C. A. Martínez-Huitle, E. Brillas, Appl. Catal., B 2009, 87 (3–4), 105–145. DOI: https://doi.org/10.1016/j.apcatb.2008.09.017
- 97 P. Kaur, V. K. Sangal, J. P. Kushwaha, Int. J. Environ. Sci. Technol. 2019, 16 (2), 801–810. DOI: https://doi.org/10.1007/s13762-018-1696-9
- 98 H. Xu et al., Chemosphere 2022, 286, 131936. DOI: https://doi.org/10.1016/j.chemosphere.2021.131936
- 99
M. B. K. Suhan et al., Environ. Nanotechnol. Monit. Manage.
2020, 14, 100335. DOI: https://doi.org/10.1016/j.enmm.2020.100335
10.1016/j.enmm.2020.100335 Google Scholar
- 100 I. C. da Costa Soares et al., Environ. Sci. Pollut. Res. 2017, 24 (31), 24167–24176. DOI: https://doi.org/10.1007/s11356-017-0041-z
- 101 C. Comninellis, G. Chen, Electrochemistry for the Environment, Springer, New York 2010.
- 102 P. Kaur, V. K. Sangal, J. P. Kushwaha. Int. J. Environ. Sci. Technol. 2019, 16, 801–810. DOI: https://doi.org/10.1007/s13762-018-1696-9
- 103
M. B. K. Suhan. Environ. Nanotechnol.Monitor. Manage.
2020, 100335. DOI: https://doi.org/10.1016/j.enmm.2020.100335
10.1016/j.enmm.2020.100335 Google Scholar
- 104 V. Rondán et al., Int. J. Electrochem. Sci. 2020, 15 (1), 52–67. DOI: https://doi.org/10.20964/2020.01.21
- 105 N. Nippatlapalli, L. Philip, Water Sci. Technol. 2020, 81 (3), 564–570. DOI: https://doi.org/10.2166/WST.2020.137
- 106 G. Kuchtová et al., J. Electroanal. Chem. 2020, 863, 114036. DOI: https://doi.org/10.1016/j.jelechem.2020.114036
- 107 M. A. Sandoval et al., ChemistrySelect 2019, 4, 13856–13866. DOI: https://doi.org/10.1002/slct.201903150
- 108 J. Núñez et al., J. Hazard. Mater. 2019, 371, 705–711. DOI: https://doi.org/10.1016/j.jhazmat.2019.03.030
- 109 C. L. M. Gasparovic et al., Desalin. Water Treat. 2019, 165, 301–13. DOI: https://doi.org/10.5004/dwt.2019.24331
- 110 R. E. Palma-Goyes et al., J. Environ. Chem. Eng. 2018, 6, 3010–3017. DOI: https://doi.org/10.1016/j.jece.2018.04.035
- 111 S. Hanumanthappa et al., Desalin. Water Treat. 2019, 146, 85–97. DOI: https://doi.org/10.5004/dwt.2019.23619
- 112 E. S. Z. El-Ashtoukhy, J. Cleaner Prod. 2017, 167, 432–446. DOI: https://doi.org/10.1016/j.jclepro.2017.08.174
- 113 A. S. Fajardo et al., J. Electroanal. Chem. 2017, 801, 30–37. DOI: https://doi.org/10.1016/j.jelechem.2017.07.015
- 114 L. Su et al., Water Res. 2017, 120, 1–11. DOI: https://doi.org/10.1016/j.watres.2017.04.069
- 115 I. M. S. Pillai et al., J. Environ. Manage. 2017, 193, 524–531. DOI: https://doi.org/10.1016/j.jenvman.2017.02.046
- 116 A. A. Babaei, Water Sci. Technol. 2017, 75, 1732–1742. DOI: https://doi.org/10.2166/wst.2017.049
- 117 J. Zou et al., Chemosphere 2017, 171, 332–338. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.065
- 118 L. Labiadh et al., J Hazard Mater. 2015, 297, 34–41. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.062
- 119
Y. G. Asfaha, A. K. Tekile, F. Zewge, Clean. Eng. Technol.
2012, 1 (4), 100261. DOI: https://doi.org/10.1016/j.clet.2021.100261
10.1016/j.clet.2021.100261 Google Scholar
- 120 J. Qiao, Y. Xiong, J. Water Process Eng. 2021, 44, 102308. DOI: https://doi.org/10.1016/j.jwpe.2021.102308
- 121
H. Afanga et al., Sustainable Environ. Res.
2020, 30 (1), 1–11. DOI: https://doi.org/10.1186/s42834-019-0043-2
10.1186/s42834-019-0043-2 Google Scholar
- 122 S. Bener, S. Atalay, G. Ersöz, Ecol. Eng. 2019, 148, 105789. DOI: https://doi.org/10.1016/j.ecoleng.2020.105789
- 123 A. Othmani et al., Chemosphere 2020, 249, 126480. DOI: https://doi.org/10.1016/j.chemosphere.2020.126480
- 124 V. Rondán et al., Int. J. Electrochem. Sci. 2020, 15 (1), 52–67. DOI: https://doi.org/10.20964/2020.01.21
- 125 A. J. Sutherland, M. X. Ruiz-Caldas, C. F. de Lannoy, J. Membr. Sci. 2020, 611, 118335. DOI: https://doi.org/10.1016/j.memsci.2020.118335
- 126 R. Zou et al., Environ. Int. 2019, 134, 105352. DOI: https://doi.org/10.1016/j.envint.2019.105352
- 127 L. Suhadolnik et al., J. Ind. Eng. Chem. 2019, 72, 178–188. DOI: https://doi.org/10.1016/j.jiec.2018.12.017
- 128 S. Liu et al., Bioresour. Technol. 2019, 294, 122236. DOI: https://doi.org/10.1016/j.biortech.2019.122236
- 129 D. Manojlović et al., Int. J. Environ. Sci. Technol. 2020, 17 (4), 2455–2462. DOI: https://doi.org/10.1007/s13762-020-02654-8
- 130 N. Nippatlapalli, L. Philip, Water Sci. Technol. 2020, 8 (13), 564–570. DOI: https://doi.org/10.2166/WST.2020.137
- 131 M. R. Samarghandi et al., Arab. J. Chem. 2020, 13 (8), 6847–6864. DOI: https://doi.org/10.1016/j.arabjc.2020.06.038
- 132 A. Gasmi et al., ACS Omega 2022, 7 (6), 22456–22476. DOI: https://doi.org/10.1021/acsomega.2c01652
- 133 M. S. Saad et al., Chemosphere 2022, 306, 135623. DOI: https://doi.org/10.1016/j.chemosphere.2022.135623
- 134 M. Yazdandoust et al., Int. J. Environ. Anal. Chem. 2022. DOI: https://doi.org/10.1080/03067319.2022.2062240
- 135 F. Orts et al., Chemosphere 2020, 245, 125396. DOI: https://doi.org/10.1016/j.chemosphere.2019.125396
- 136
M. B. K. Suhan et al., Monit. Manage.
2020, 14, 100335. DOI: https://doi.org/10.1016/j.enmm.2020.100335
10.1016/j.enmm.2020.100335 Google Scholar
- 137 R. Zou, I. Angelidaki, B. Jin, Y. Zhang, Environ. Int. 2020, 134, 105352. DOI: https://doi.org/10.1016/j.envint.2019.105352
- 138 M. E. Demir et al., Energy Convers. Manage. 2019, 199, 111903. DOI: https://doi.org/10.1016/j.enconman.2019.111903
- 139 K. Li et al., Electrochim. Acta 2019, 303, 329–40. DOI: https://doi.org/10.1016/j.electacta.2019.02.102
- 140 S. Liu et al., Bioresour. Technol. 2019, 294, 122236. DOI: https://doi.org/10.1016/j.biortech.2019.122236
- 141 K. Oukili et al., Mediterr. J. Chem. 2019, 8, 410–419. DOI: https://doi.org/10.13171/mjc851907103ko
- 142 R. Salazar et al., Sol. Energy 2019, 190, 82–91. DOI: https://doi.org/10.1016/j.solener.2019.07.072
- 143 N. H. Torres et al., Chemosphere 2019, 236, 124309. DOI: https://doi.org/10.1016/j.chemosphere.2019.07.040
- 144 R. Kötz et al., J. Appl. Electrochem. 1991, 21, 14–20. DOI: https://doi.org/10.1007/BF01103823
- 145 P. A. Alves et al., Water Sci. Technol. 2010, 61 (2), 491–498. DOI: https://doi.org/10.2166/wst.2010.870
- 146 M. Sala, V. López-Grimau, C. Gutiérrez-Bouzán, Materials 2014, 7 (11), 7349–7365. DOI: https://doi.org/10.3390/ma7117349
- 147
S. A. Urmi, A. S. W. Kurny, F. Gulshan, Procedia Eng.
2014, 105, 844–851. DOI: https://doi.org/10.1016/j.proeng.2015.05.100
10.1016/j.proeng.2015.05.100 Google Scholar
- 148 A. N. Subba Rao, V. T. Venkatarangaiah, Environ. Sci. Pollut. Res. 2018, 25 (12), 11480–11492. DOI: https://doi.org/10.1007/s11356-017-1179-4
- 149 J. Han et al., Chin. Chem. Lett. 2017, 28 (12), 2239–2243. DOI: https://doi.org/10.1016/j.cclet.2017.08.031
- 150 K. Li et al., Electrochim. Acta 2019, 303, 329–340. DOI: https://doi.org/10.1016/j.electacta.2019.02.102
- 151 F. Medrano-Rodríguez et al., J. Electroanal. Chem. 2020, 873, 114360. DOI: https://doi.org/10.1016/j.jelechem.2020.114360
- 152 M. O. A. Pacheco-Álvarez, J. Electroanal. Chem. 2019, 838, 195–203. DOI: https://doi.org/10.1016/j.jelechem.2019.03.004
- 153 S. Alcocer et al., Chemosphere. 2018, 205, 682–689. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.155
- 154 K. Wenderich et al., Sustainable Energy Fuels 2020, 4, 3143–3156. DOI: https://doi.org/10.1039/d0se00524j
- 155 S. D. C. Rodrigues, L. M. Madeira, A. R. Rui, Ind. Eng. Chem. 2013, 52, 13313–13324. DOI: https://doi.org/10.1021/ie401301h
- 156 A. G. Trovó et al., Sol. Energy 2013, 97, 596–604. DOI: https://doi.org/10.1016/j.solener.2013.09.017
- 157 S. Garcia-Segura, E. Brillas, Electrochim. Acta 2014, 140, 384–395. DOI: https://doi.org/10.1016/j.electacta.2014.04.009
- 158 R. Salazar, E. Brillas, I. Sirés, Appl. Catal., B 2012, 115–116, 107–116. DOI: https://doi.org/10.1016/j.apcatb.2011.12.026
- 159 K. Gautam, S. Kamsonlian, S. Kumar, Sep. Sci. Technol. 2019, 55 (18), 3412–3426. DOI: https://doi.org/10.1080/01496395.2019.1677713
- 160 N. S. Houssini, A. Essadki, E. Elqars, Desalin. Water Treat. 2021, 223, 363–379. DOI: https://doi.org/10.5004/dwt.2021.27111
- 161 Y. G. Asfaha et al., Water Sci Technol. 2022, 85 (5), 1549–1567.DOI: https://doi.org/10.2166/wst.2022.061
- 162 I. M. S. Pillai, A. K. Gupta, J. Environ. Manage. 2017, 193, 524–531. DOI: https://doi.org/10.1016/j.jenvman.2017.02.046
- 163 M. Saleh et al., Water Sci. Technol. 2021, 84 (5), 1245–1256. DOI: https://doi.org/10.2166/wst.2021.240
- 164 H. Hamad et al., Ecotoxicol. Environ. Saf. 2018, 148, 501–512. DOI: https://doi.org/10.1016/j.ecoenv.2017.10.061
- 165 P. Kaur, J. P. Kushwaha, V. K. Sangal, Chemosphere 2018, 207, 690–698. DOI: https://doi.org/10.1016/j.chemosphere.2018.05.114
- 166 P. Kaur, V. K. Sangal, J. P. Kushwaha, Int. J. Environ. Sci. Technol. 2019, 16, 801–810. DOI: https://doi.org/10.1007/s13762–018–1696
- 167
R. Tabarak et al., Biomass Convers. Biorefin., in press. DOI: https://doi.org/10.1007/s13399-022-02809-2
10.1007/s13399?022?02809?2 Google Scholar
- 168 M. Panizza, G. Cerisola, Chem. Rev. 2009, 109 (12), 6541–6569. DOI: https://doi.org/10.1021/cr9001319
- 169 N. Nordin et al., Int. J. Electrochem. Sci. 2013, 8 (9), 11403–11415.
- 170 R. D. Coteiro, A. R. De Andrade, J. Appl. Electrochem. 2007, 37 (6), 691–698. DOI: https://doi.org/10.1007/s10800-007-9301-9
- 171 A. M. Polcaro et al., J. Appl. Electrochem. 1999, 29 (2), 147–151. DOI: https://doi.org/10.1023/A:1003411906212
- 172 C. L. P. S. Zanta et al., J. Appl. Electrochem. 2003, 33 (12), 1211–1215. DOI: https://doi.org/10.1023/B:JACH.0000003863.13587.b7
- 173 P. A. Carneiro et al., Chemosphere 2005, 59 (3), 431–439. DOI: https://doi.org/10.1016/j.chemosphere.2004.10.043
- 174 C. A. Martínez-Huitle et al., Environ. Sci. Technol. 2008, 42 (18), 6929–6935. DOI: https://doi.org/10.1021/es8008419
- 175 D. Shao et al., Chem. Eng. J. 2014, 244, 288–295. DOI: https://doi.org/10.1016/j.cej.2014.01.074
- 176 C. García-Gómez et al., J. Electroanal. Chem. 2014, 732, 1–10. DOI: https://doi.org/10.1016/j.jelechem.2014.08.032
- 177 P. J. Espinoza-Montero et al., Curr. Opin. Solid State Mater. Sci. 2022, 26 (3), 100988. DOI: https://doi.org/10.1016/j.cossms.2022.100988
- 178 W. Yang et al., J. Alloys Compd. 2021, 890, 161760. DOI: https://doi.org/10.1016/j.jallcom.2021.161760
- 179 K. Rathinakumaran, R. M. Meyyappan, Int. J. Chem. Tech. Res. 2015, 8, 1203–1211.
- 180 B. D. Soni, J. P. Ruparelia, Procedia Eng. 2013, 51, 335–341. DOI: https://doi.org/10.1016/j.proeng.2013.01.046
- 181 P. Bautista et al., Water Sci Technol. 2014, 70, 472–478. DOI: https://doi.org/10.2166/wst.2014.246
- 182 R. G. Bhaskar et al., Desalination 2009, 249, 167–174. DOI: https://doi.org/10.1016/j.desal.2008.08.012
- 183 D. W. Miwa et al., Water Res. 2006, 40, 3281– 3289. DOI: https://doi.org/10.1016/j.watres.2006.06.033
- 184 L. Szpyrkowicz et al., Ind. Eng. Chem. Res. 2000, 39, 3241–3248. DOI: https://doi.org/10.1021/ie9908480
- 185 M. Iho, G. Bocea, A. Iovi, Chem. Bill. Politech. Univ. 2005, 50 (64), 1–2.
- 186 P. Alulema-Pullupaxi et al., Chemosphere 2021, 278, 130488. DOI: https://doi.org/10.1016/j.chemosphere.2021.130488
- 187 D. Miao et al., Chem. Eng. J. 2021, 429, 132366. DOI: https://doi.org/10.1016/j.cej.2021.132366
- 188 N. Papastefanakis, D. Mantzavinos, A. Katsaounis, J. Appl. Electrochem. 2010, 40 (4), 729–737. DOI: https://doi.org/10.1007/s10800-009-0050-9
- 189 D. Chun et al., J. Water Process Eng. 2018, 26, 1–9. DOI: https://doi.org/10.1016/j.jwpe.2018.06.004
- 190 C. W. dos Anjos Bezerra et al., J. Electroanal. Chem. 2020, 859, 113822. DOI: https://doi.org/10.1016/j.jelechem.2020.113822
- 191 Z. S. Msindo, V. Sibanda, J. H. Potgieter, J. Appl. Electrochem. 2010, 40 (3), 691–699. DOI: https://doi.org/10.1007/s10800-009-0044-7
- 192 D. W. Miwa et al., Water Res. 2006, 40 (7), 3281–3289. DOI: https://doi.org/10.1016/j.watres.2006.06.033
- 193 C. R. Costa et al., J. Hazard. Mater. 2008, 153 (1–2). 616–627. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.005
- 194 B. Wang et al., J. Hazard. Mater. 2007, 146 (1–2), 295–301. DOI: https://doi.org/10.1016/j.jhazmat.2006.12.03
- 195 W. Wu et al., Appl. Catal., A 2014, 480, 58–78. DOI: https://doi.org/10.1016/j.apcata.2014.04.035