Conformational transition and liquid crystalline state of regenerated silk fibroin in water
Corresponding Author
Xin-Gui Li
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, ChinaSearch for more papers by this authorLi-Ya Wu
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Search for more papers by this authorMei-Rong Huang
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Search for more papers by this authorHui-Li Shao
State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, Donghua University, Shanghai 200051, China
Search for more papers by this authorXue-Chao Hu
State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, Donghua University, Shanghai 200051, China
Search for more papers by this authorCorresponding Author
Xin-Gui Li
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, ChinaSearch for more papers by this authorLi-Ya Wu
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Search for more papers by this authorMei-Rong Huang
Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Search for more papers by this authorHui-Li Shao
State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, Donghua University, Shanghai 200051, China
Search for more papers by this authorXue-Chao Hu
State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, Donghua University, Shanghai 200051, China
Search for more papers by this authorAbstract
The conformational transition of molecular chains of regenerated silk fibroin (SF) aqueous solution is systematically investigated by circular dichroism, Raman, IR, and UV–vis spectroscopies. It is found that an initial random coil conformation of the SF can be readily changed into an ordered β-sheet structure by optimizing the solution conditions, such as the SF concentration, pH, temperature, or metal-ion content. Circular dichroic spectra quantitatively confirm a steadily decreased content of the random coil conformation but a significantly increased β-sheet content after an ultrasonic or extruding treatment. Furthermore, the extrusion is more powerful to achieve high β-sheet content than the ultrasonic. It is interesting that the polarized optical micrographs of the SF aqueous solution extruded by injection illustrate the formation and existence of liquid crystalline state. A study of extrusion in vitro could be used as a model system to understand the natural silk spinning process in silkworm. © 2007 Wiley Periodicals, Inc. Biopolymers 89: 497–505, 2008.
This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at [email protected]
REFERENCES
- 1 Bergmann, M.;Niemann, C. J Biol Chem 1938, 122, 577–596.
- 2 Matsumoto, A.;Chen, J.;Collette, A. L.;Kim, U.-J.;Altman, G. H.;Cebe, P.;Kaplan, D. L. J Phys Chem B 2006, 110, 21630–21638.
- 3 Yamauchi, K.;Imada, T.;Asakura, T. J Phys Chem B 2005, 109, 17689–17692.
- 4 Kazushi, Y.;Yasuyuki, T.;Akira, I. Thin Solid Films 2003, 440, 208–216.
- 5 Valluzzi, R.;Jin, H. J. Biomacromolecules 2004, 5, 696–703.
- 6 Asakura, T.;Ohgo, K.;Ishida, T.;Taddei, P.;Monti, P.;Kishore, R. Biomacromolecules 2005, 6, 468–474.
- 7 Shen, Y.;Johnson, M. A.;Martin, D. C. Macromolecules 1998, 31, 8857–8864.
- 8 Kimura, H.;Kishi, S.;Shoji, A.;Sugisawa, H.;Deguchi, K. Macromolecules 2000, 33, 9682–9687.
- 9 Asakura, T.;Suita, K.;Kameda, T.;Afonin, S.;Ulrich, A. Magn Reson Chem 2004, 42, 258–266.
- 10 Ashida, J.;Ohgo, K.;Asakura, T. J Phys Chem B 2002, 106, 9434–9439.
- 11 Lazo, N. D.;Downing, D. T. Macromolecules 1999, 32, 4700–4705.
- 12 Exler, J. H.;Hümmerich, D.;Scheibel, T. Angew Chem Int Ed Engl 2007, 46, 3559–3562.
- 13 Fedic, R.;Zurovec, M.;Sehnal, F. J Biol Chem 2003, 278, 35255–35264.
- 14 Phillips, D. M.;Drummy, L. F.;Conrady, D. G.;Fox, D. M.;Naik, R. R.;Stone, M. O.;Trulove, P. C.;De Long, H. C.;Mantz, R. A. J Am Chem Soc 2004, 126, 14350–14351.
- 15 Jin, H. J.;Park, J.;Valluzzi, R.;Cebe, P.;Kaplan, D. L. Biomacromolecules 2004, 5, 711–717.
- 16 Dicko, C.;Kenney, J. M.;Knight, D.;Vollrath, F. Biochemistry 2004, 43, 14080–14087.
- 17 Dicko, C.;Knight, D.;Kenney, J. M.;Vollrath, F. Biomacromolecules 2004, 5, 758–767.
- 18 Yao, J. M.;Nakazawa, Y.;Asakura, T. Biomacromolecules 2004, 5, 680–688.
- 19 Valluzzi, R.;He, S. J.;Gido, S. P.;Kaplan, D. Int J Biol Macromol 1999, 24, 227–236.
- 20 Yang, Y. H.;Shao, Z. Z.;Chen, X.;Zhou, P. Biomacromolecules 2004, 5, 773–779.
- 21 Baker, C. C.;Isenberg, I. Biochemistry 1976, 15, 629–634.
- 22 Greenfield, N.;Fasman, G. D. Biochemistry 1969, 8, 4108–4116.
- 23 Canetti, M.;Seves, A.;Secundo, F.;Vecchio, G. Biopolymers 1989, 28, 1613–1624.
- 24 Iizuka, E.;Yang, J. T. Proc Natl Acad Sci USA 1966, 55, 1175–1182.
- 25 Chen, Y.;Yang, J. T.;Martinex, H. M. Biochemistry 1972, 11, 4120–4131.
- 26 Chen, X.;Knight, D. P.;Shao, Z. Z.;Vollrath, F. Biochemistry 2002, 41, 14944–14950
- 27 Hossain, K. S.;Nemoto, N. Langmuir 1999, 15, 4114–4119.
- 28 Zhou, P.;Xie, X.;Knight, D. P.;Zong, X. H.;Deng, F.;Yao, W. H. Biochemistry 2004, 43, 11302–11311.
- 29 Hossain, K. S.;Ochi, A.;Ooyama, E.;Magoshi, J.;Nemoto, N. Biomacromolecules 2003, 4, 350–359.
- 30 Shao, Z. Z.;Vollrath, F.;Yang, Y.;Thøgersen, H. C. Macromolecules 2003, 36, 1157–1161.
- 31 Zong, X. H.;Zhou, P.;Shao, Z. Z.;Chen, S. M.;Chen, X.;Hu, B. W.;Deng, F.;Yao, W. H. Biochemistry 2004, 43, 11932–11941.
- 32 Li, G. Y.;Zhou, P.;Shao, Z. Z.;Xie, X.;Chen, X.;Wang, H. H.;Li, J.;Chun, Y.;Yu, T. Y. Eur J Biochem 2001, 268, 6600–6606.
- 33 Monti, P.;Freddi, G.;Sampaio, S.;Tsukada, M.;Taddei, P. J Mol Struct 2005, 744, 685–690.
- 34 Monti, P.;Freddi, G.;Bertoluzza, A.;Kasai, N.;Tsukada, M. Raman Spectrosc 1998, 29, 297–304.
- 35 Shao, J. Z.;Zheng, J. H.;Liu, J. Q.;Carr, C. M. J Appl Polym Sci 2005, 96, 1999–2004.
- 36 Ayutsede, J.;Gandhi, M.;Sukigara, S.;Micklus, M.;Chen, H. E.;Ko, F. Polymer 2005, 46, 1625–1634.
- 37 Um, I. C.;Kweon, H. Y.;Park, Y. H. Int J Biol Macromol 2001, 29, 91–97.
- 38 Rössle, M.;Panine, P.;Urban, V. S.;Riekel, C. Biopolymers 2004, 74, 316–327.
- 39 Taketani, I.;Nakayama, S.;Nagare, S.;Senna, M. Appl Surf Sci 2005, 244, 623–626.
- 40 Willcox, P. J.;Gido, S. P.;Muller, W.;Kaplan, D. P. Macromolecules 1996, 29, 5106–5110.
- 41 Du, N.;Liu, X. Y.;Narayanan, J.;Li, L.;Lim, M. L. M.;Li, D. Biophys J 2006, 91, 4528–4535.