Incorporating Ionic Liquid 1-Ethyl-3-Methylimidazolium Bromide Into PVA-LiAc–Based Solid Polymer Electrolytes to Achieve Advanced Solid-State Lithium-Ion Batteries
Endah Purwanti
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Department of Environmental Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Software (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDeana Wahyuningrum
Organic Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorAchmad Rochliadi
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorSun Theo Constan Lotebulo Ndruru
Research Center for Chemistry, Research Organization for Nanotechnology and Materials, National Research and Innovation Agency (BRIN), Kawasan PUSPITEK Area Serpong, Tangerang Selatan, Banten, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
I Made Arcana
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Correspondence:
I Made Arcana ([email protected])
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal), Resources (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorEndah Purwanti
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Department of Environmental Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Software (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDeana Wahyuningrum
Organic Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorAchmad Rochliadi
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorSun Theo Constan Lotebulo Ndruru
Research Center for Chemistry, Research Organization for Nanotechnology and Materials, National Research and Innovation Agency (BRIN), Kawasan PUSPITEK Area Serpong, Tangerang Selatan, Banten, Indonesia
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
I Made Arcana
Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
Correspondence:
I Made Arcana ([email protected])
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal), Resources (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorFunding: This work was supported by the Indonesian Endowment Funds for Education (LPDP), Center for Higher Education Funding (BPPT, Balai Pembiayaan Pendidikan Tinggi), the Indonesian Education Scholarship (BPI) under the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and supported by the Research Grant of PPMI-ITB, Research, Community Service, and Innovation of Institut Teknologi Bandung (ITB).
ABSTRACT
Solid polymer electrolytes (SPEs) serve as both separators and electrolytes, enhancing the safety of energy storage devices by eliminating liquid components. In this study, we present SPEs prepared from a blend of polyvinyl alcohol (PVA), lithium acetate (LiAc), and the ionic liquid 1-ethyl-3-methylimidazolium bromide ([EMIm]Br). This combination prevents leakage issues common with liquid electrolytes and addresses the low conductivity of typical solid electrolytes. The prepared SPEs are easy to produce, highly transparent, thermally stable up to 271°C, and exhibit high ionic conductivity, with values of 2.21 × 10−5 S cm−1 when 40% [EMIm]Br is added to the PVA/10% LiAc membrane. Additionally, this composition demonstrates a mechanical strength of 20.40 MPa and an elongation of 485.12%. These findings highlight the strong potential of [EMIm]Br–based SPEs for lithium-ion batteries.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1X. Song, X. Lei, T. Tian, et al., “Constructing 3D Porous Network Channel on PP-Based Separator to Achieve Homogeneous Deposition of Lithium Ions for Lithium Metal Battery,” Electrochimica Acta 499 (2024): 144568, https://doi.org/10.1016/j.electacta.2024.144568.
- 2G. Zhu, C. Jin, H. Li, et al., “Construction of Strengthened Crosslinked Polymer Coating Using Liquid-Like Nanoparticle on Polyphenylene Sulfide Nonwoven as Separator: Improved Cycling Performance in Lithium-Ion Battery,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 691 (2024): 133856, https://doi.org/10.1016/j.colsurfa.2024.133856.
- 3C. Song, J. Luo, C. Gao, et al., “Halloysite Nanotubes Enhanced Polyimide/Oxidized-Lignin Nanofiber Separators for Long-Cycling Lithium Metal Batteries,” International Journal of Biological Macromolecules 273 (2024): 132640, https://doi.org/10.1016/j.ijbiomac.2024.132640.
- 4X. W. Wu, M. Seenivasan, C. Karuppiah, et al., “Fabrication Electro-Spun Poly(Vinyl Alcohol)-Melamine Nonwoven Membrane Composite Separator for High-Power Lithium-Ion Batteries,” Heliyon 10 (2024): e34436, https://doi.org/10.1016/j.heliyon.2024.e34436.
- 5Y. Lei, L. Xu, Q. N. Chan, et al., “Recent Advances in Separator Design for Lithium Metal Batteries Without Dendrite Formation: Implications for Electric Vehicles,” eTransportation 20 (2024): 100330, https://doi.org/10.1016/j.etran.2024.100330.
- 6C. Lin, T. Yang, H. Zhang, et al., “Ternary Stabilization Strategies for Succinonitrile-Based In Situ Polymerized Electrolyte Enabling High-Performance Solid Lithium Metal Batteries,” Chemical Engineering Journal 495 (2024): 153541, https://doi.org/10.1016/j.cej.2024.153541.
- 7H. Liu, L. Xu, F. Zhu, et al., “Unveiling the Effect Law of Carbon Dots With Polyfunctional Groups on Interface Structure and Ion Migration in Polymer Electrolytes for Solid Lithium Battery,” Nano Energy 126 (2024): 109623, https://doi.org/10.1016/j.nanoen.2024.109623.
- 8K. Shi, Z. Xu, M. Huang, et al., “Solid-State Polymer Electrolytes With Polypropylene Separator-Reinforced Sandwich Structure for Room-Temperature Lithium Ion Batteries,” Journal of Membrane Science 638 (2021): 119713, https://doi.org/10.1016/j.memsci.2021.119713.
- 9J. R. Nykaza, A. M. Savage, Q. Pan, et al., “Polymerized Ionic Liquid Diblock Copolymer as Solid-State Electrolyte and Separator in Lithium-Ion Battery,” Polymer 101 (2016): 311–318, https://doi.org/10.1016/j.polymer.2016.08.100.
- 10D. Xu, D. Zhao, X. Niu, T. Wang, and Z. Yang, “Polyester-Enhanced Poly(Cyclic Carbonate-Fluoride)-Based Polymer Electrolyte for Stable Circulating Solid Lithium Batteries,” Chemical Engineering Journal 490 (2024): 151780, https://doi.org/10.1016/j.cej.2024.151780.
- 11W. Xiao, J. Song, L. Huang, Z. Yang, and Q. Qiao, “PVA-ZrO2 Multilayer Composite Separator With Enhanced Electrolyte Property and Mechanical Strength for Lithium-Ion Batteries,” Ceramics International 46 (2020): 29212–29221, https://doi.org/10.1016/j.ceramint.2020.08.095.
- 12X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu, and L. Lu, “Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries—Review,” Advanced Energy Materials 13 (2023): 202301746, https://doi.org/10.1002/aenm.202301746.
- 13L. Z. Fan, H. He, and C. W. Nan, “Tailoring Inorganic–Polymer Composites for the Mass Production of Solid-State Batteries,” Nature Reviews Materials 6 (2021): 1003–1019, https://doi.org/10.1038/s41578-021-00320-0.
- 14Y. Wei, H. Zhou, H. Deng, et al., “‘Toolbox’ for the Processing of Functional Polymer Composites,” Nano-Micro Letters 14 (2022): 35, https://doi.org/10.1007/s40820-021-00774-5.
- 15R. S. Dong, F. Lu, P. Liu, et al., “Preparation of Nanocellulose-Polyvinyl Alcohol Composite Hydrogels From Desmodium intortum (Mill.) Urb.: Chemical Property Characterization,” Industrial Crops and Products 176 (2022): 114371, https://doi.org/10.1016/j.indcrop.2021.114371.
- 16Y. Dou, S. Wang, M. E. Gibril, and F. Kong, “Electrospun of Polyvinyl Alcohol Composite Hydrogel Nanofibers Prepared by In-Situ Polymerization: A Novel Approach to Fabricate Hydrogel Nanofiber Membrane for Lithium-Ion Batteries,” Chemical Engineering Journal 481 (2024): 148435, https://doi.org/10.1016/j.cej.2023.148435.
- 17Y. Xia, X. Li, J. Zhuang, Y. Yuan, and W. Wang, “Cellulose Microspheres Enhanced Polyvinyl Alcohol Separator for High-Performance Lithium-Ion Batteries,” Carbohydrate Polymers 300 (2023): 120231, https://doi.org/10.1016/j.carbpol.2022.120231.
- 18Y. Dou, S. Li, S. Wang, M. E. Gibril, and F. Kong, “Utilizing Methacrylated Lignin as a Sustainable Macro-Crosslinker for Synthesizing Innovative PVA/AMPS Composites Crosslinked Hydrogel Nanofibers: A Potential Application for Lithium-Ion Battery Separators,” Composites Part B: Engineering 281 (2024): 111537, https://doi.org/10.1016/j.compositesb.2024.111537.
- 19W. Miao, J. Wang, G. Li, S. Liu, and X. Luo, “Superior Thermal Stability of PVA/Cellulose Composite Membranes for Lithium-Ion Battery Separators Prepared by Impregnation Method With Noncovalent Cross-Linking of Intermolecular Multiple Hydrogen-Bonds,” Journal of Energy Storage 66 (2023): 107353, https://doi.org/10.1016/j.est.2023.107353.
- 20H. Jeon, H. A. Hoang, and D. Kim, “Flexible PVA/BMIMOTf/LLZTO Composite Electrolyte With Liquid-Comparable Ionic Conductivity for Solid-State Lithium Metal Battery,” Journal of Energy Chemistry 74 (2022): 128–139, https://doi.org/10.1016/j.jechem.2022.07.014.
- 21Z. Tian and D. Kim, “A Flexible, Robust, and High Ion-Conducting Solid Electrolyte Membranes Enabled by Interpenetrated Network Structure for All-Solid-State Lithium Metal Battery,” Journal of Energy Chemistry 68 (2022): 603–611, https://doi.org/10.1016/j.jechem.2021.12.035.
- 22M. F. Shukur, M. H. Hamsan, and M. F. Z. Kadir, “Plasticized and Plasticizer Free Lithium Acetate Doped Polyvinyl Alcohol-Chitosan Blend Solid Polymer Electrolytes: Comparative Studies,” Journal of Physics Conference Series 1123 (2018): 012001, https://doi.org/10.1088/1742-6596/1123/1/012001.
10.1088/1742-6596/1123/1/012001 Google Scholar
- 23K. Sundaramahalingam, M. Muthuvinayagam, N. Nallamuthu, D. Vanitha, and M. Vahini, “Investigations on Lithium Acetate-Doped PVA/PVP Solid Polymer Blend Electrolytes,” Polymer Bulletin 76 (2019): 5577–5602, https://doi.org/10.1007/s00289-018-02670-2.
- 24V. S. Rangasamy, S. Thayumanasundaram, and J. P. Locquet, “Solid Polymer Electrolytes With Poly(Vinyl Alcohol) and Piperidinium Based Ionic Liquid for Li-Ion Batteries,” Solid State Ionics 333 (2019): 76–82, https://doi.org/10.1016/j.ssi.2019.01.024.
- 25J. O. Akindoyo, N. H. Ismail, and M. Mariatti, “Performance of Poly(Vinyl Alcohol) Nanocomposite Reinforced With Hybrid TEMPO Mediated Cellulose-Graphene Filler,” Polymer Testing 80 (2019): 106140, https://doi.org/10.1016/j.polymertesting.2019.106140.
- 26L. Long, S. Wang, M. Xiao, and Y. Meng, “Polymer Electrolytes for Lithium Polymer Batteries,” Journal of Materials Chemistry A 4 (2016): 10038–10069, https://doi.org/10.1039/c6ta02621d.
- 27A. Singh, P. S. Dhapola, S. Konwar, et al., “Ionic Liquid (1-Ethyl-3-Methyltricynomethanide) Doped Polymer Electrolyte (Polyvinyl Alcohol) for Sustainable Energy Devices,” Journal of Science: Advanced Materials and Devices 8 (2023): 100566, https://doi.org/10.1016/j.jsamd.2023.100566.
- 28L. Manfredy Marquina, L. la Torre Riveros, V. Jauja Ccana, G. Muedas-Taipe, M. Isaacs, and A. la Rosa-Toro, “Recent Studies on Polymer Electrolytes Containing Ionic Liquids and Their Applications in Lithium-Ion Batteries,” Journal of Electroanalytical Chemistry 948 (2023): 117819, https://doi.org/10.1016/j.jelechem.2023.117819.
- 29A. K. Tripathi, “Ionic Liquid–Based Solid Electrolytes (Ionogels) for Application in Rechargeable Lithium Battery,” Materials Today Energy 20 (2021): 100643, https://doi.org/10.1016/j.mtener.2021.100643.
- 30J. Atik, J. H. Thienenkamp, G. Brunklaus, M. Winter, and E. Paillard, “Ionic Liquid Plasticizers Comprising Solvating Cations for Lithium Metal Polymer Batteries,” Electrochimica Acta 398 (2021): 139333, https://doi.org/10.1016/j.electacta.2021.139333.
- 31J. C. Barbosa, R. S. Pinto, D. M. Correia, et al., “Solid Polymer Electrolytes Based on a High Dielectric Polymer and Ionic Liquids for Lithium Batteries,” Journal of Power Sources 585 (2023): 233630, https://doi.org/10.1016/j.jpowsour.2023.233630.
- 32J. P. Serra, A. Fidalgo-Marijuan, J. C. Barbosa, et al., “Lithium-Ion Battery Solid Electrolytes Based on Poly(Vinylidene Fluoride)-Metal Thiocyanate Ionic Liquid Blends,” ACS Applied Polymer Materials 4 (2022): 5909–5919, https://doi.org/10.1021/acsapm.2c00789.
- 33S. Rana, R. C. Thakur, and H. S. Dosanjh, “Ionic Liquids as Battery Electrolytes for Lithium Ion Batteries: Recent Advances and Future Prospects,” Solid State Ionics 400 (2023): 116340, https://doi.org/10.1016/j.ssi.2023.116340.
- 34C. M. Sai Prasanna and S. A. Suthanthiraraj, “Effective Influences of 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl) Imide (EMIMTFSI) Ionic Liquid on the Ion Transport Properties of Micro-Porous Zinc-Ion Conducting Poly(Vinyl Chloride)/Poly(Ethyl Methacrylate) Blend-Based Polymer Electrolytes,” Journal of Polymer Research 23 (2016): 1–7, https://doi.org/10.1007/s10965-016-1043-0/Published.
10.1007/s10965-015-0892-2 Google Scholar
- 35N. M. Khan, M. Z. Kufian, and A. S. Samsudin, “The Correlation of Free Ions With the Conduction Phase of 1-Ethyl-3-Methylimidazolium Chloride in Gel Polymer Electrolyte-Based PMMA/PLA Blend Doped With LiBOB,” Journal of Electronic Materials 52 (2023): 4247–4260, https://doi.org/10.1007/s11664-022-10163-2.
- 36V. M. Dinh, S. G. Khokarale, P. O. May, T. Sparrman, K. Irgum, and J. P. Mikkola, “Ionic Liquid Strategy for Chitosan Production From Chitin and Molecular Insights,” RSC Sustainability 2 (2024): 1154–1164, https://doi.org/10.1039/d4su00053f.
- 37E. Purwanti, D. Wahyuningrum, A. Rochliadi, and I. M. Arcana, “Polymer Electrolyte Membrane Based on PVA/LiClO4 Nanocomposite Reinforced Cellulose Nanocrystalline From Corncob for Lithium-Ion Battery,” Journal of Polymer Science 62 (2024): 1424–1436, https://doi.org/10.1002/pol.20230771.
- 38J. C. Barbosa, R. S. Pinto, D. M. Correia, et al., “Effect of Fluorinated Polymer Matrix Type in the Performance of Solid Polymer Electrolytes Based on Ionic Liquids for Solid-State Lithium-Ion Batteries,” Chemical Engineering Journal 478 (2023): 147388, https://doi.org/10.1016/j.cej.2023.147388.
- 39T. Rajkumar and G. Ranga Rao, “Synthesis and Characterization of Hybrid Molecular Material Prepared by Ionic Liquid and Silicotungstic Acid,” Materials Chemistry and Physics 112 (2008): 853–857, https://doi.org/10.1016/j.matchemphys.2008.06.046.
- 40M. Musa, D. M. Dawson, S. E. Ashbrook, and R. E. Morris, “Ionothermal Synthesis and Characterization of CoAPO-34 Molecular Sieve,” Microporous and Mesoporous Materials 239 (2017): 336–341, https://doi.org/10.1016/j.micromeso.2016.09.045.
- 41M. B. Ahmed, M. M. Nofal, S. B. Aziz, et al., “The Study of Ion Transport Parameters Associated With Dissociated Cation Using EIS Model in Solid Polymer Electrolytes (SPEs) Based on PVA Host Polymer: XRD, FTIR, and Dielectric Properties,” Arabian Journal of Chemistry 15 (2022): 104196, https://doi.org/10.1016/j.arabjc.2022.104196.
- 42S. T. C. L. Ndruru, A. Marlina, B. S. Nugroho, et al., “Preparation and Characterization of Polymer Blend Electrolyte Membranes Based on Lithium Acetate-Complexed Carboxymethyl Cellulose (CMC) and Carboxymethyl Chitosan (CMCh) Blend,” Polymer Engineering and Science 64 (2024): 761–778, https://doi.org/10.1002/pen.26582.
- 43N. Farah, H. M. Ng, A. Numan, et al., “Solid Polymer Electrolytes Based on Poly(Vinyl Alcohol) Incorporated With Sodium Salt and Ionic Liquid for Electrical Double Layer Capacitor,” Materials Science and Engineering B 251 (2019): 114468, https://doi.org/10.1016/j.mseb.2019.114468.
- 44J. P. Serra, R. S. Pinto, J. C. Barbosa, et al., “Ionic Liquid Based Fluoropolymer Solid Electrolytes for Lithium-Ion Batteries,” Sustainable Materials and Technologies 25 (2020): e00176, https://doi.org/10.1016/j.susmat.2020.e00176.
- 45Q. Zheng, S. Mei, J. Chen, et al., “Preparation and Performance of Bicomponent Polyacrylonitrile/Polymethyl Methacrylate Lithium-Ion Battery Separator by Centrifugal Spinning,” Polymer 307 (2024): 127226, https://doi.org/10.1016/j.polymer.2024.127226.
- 46R. Y. Mahmood, A. A. Kareem, and A. R. Polu, “Enhancement of Ionic Conductivity and Electrochemical Stability of PVA/HPMC/PANI/CuSO4 Gel Polymer for Rechargeable Batteries Electrolytes,” Solid State Ionics 408 (2024): 116511, https://doi.org/10.1016/j.ssi.2024.116511.
- 47H. Yang and N. Wu, “Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review,” Energy Science and Engineering 10 (2022): 1643–1671, https://doi.org/10.1002/ese3.1163.
- 48A. S. Samsudin, N. M. Ghazali, N. F. Mazuki, K. Aoki, and Y. Nagao, “The Ionic Conductivity and Electrochemical Performance of Alginate-PVA Based Polymer Electrolyte With Li+ Charge Carriers for Supercapacitor,” Journal of Electroanalytical Chemistry 967 (2024): 118463, https://doi.org/10.1016/j.jelechem.2024.118463.
- 49F. Ma, Y. Liu, T. Huang, X. du, Q. Lu, and K. Kid, “Facile In Situ Polymerization Synthesis of Poly(Ionic Liquid)-Based Polymer Electrolyte for High-Performance Solid-State Batteries,” Energy Conversion and Management: X 22 (2024): 100570, https://doi.org/10.1016/j.ecmx.2024.100570.
- 50V. M. Macedo, J. C. Barbosa, H. Salazar, et al., “Enhanced Performance of Solid Polymer Electrolytes Combining Poly(Vinylidene Fluoride-Co-Hexafluoropropylene), Metal-Organic Framework and Ionic Liquid for Advanced Solid State Lithium-Ion Batteries,” Journal of Energy Storage 90 (2024): 111919, https://doi.org/10.1016/j.est.2024.111919.
- 51S. T. C. L. Ndruru, M. Y. Saputra, Z. Zurriyati, et al., “Rational Design of Solid Polymer Electrolyte Membranes Based on Poly(Vinyl Alcohol)/Lithium Salt-Plasticized With Deep Eutectic Solvent,” Journal of Applied Polymer Science 141 (2024): e56050, https://doi.org/10.1002/app.56050.
- 52C. D. D. Sundari, J. Karunawan, S. P. Santosa, I. M. Arcana, and F. Iskandar, “Role of LiTFSI Salt Content and Salt Crystallization on Carboxymethyl Chitosan-Based Solid Polymer Electrolytes for Stable Li Metal Batteries,” ACS Applied Polymer Materials 5 (2023): 6817–6827, https://doi.org/10.1021/acsapm.3c00814.
- 53S. B. Aziz, M. M. Nofal, R. T. Abdulwahid, et al., “Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics,” Polymers 13 (2021): 803, https://doi.org/10.3390/polym13050803.
- 54J. Li, X. Chen, S. Muhammad, et al., “Development of Solid Polymer Electrolytes for Solid-State Lithium Battery Applications,” Materials Today Energy 43 (2024): 101574, https://doi.org/10.1016/j.mtener.2024.101574.
- 55X. Zhan, J. Zhang, M. Liu, J. Lu, Q. Zhang, and F. Chen, “Advanced Polymer Electrolyte With Enhanced Electrochemical Performance for Lithium-Ion Batteries: Effect of Nitrile-Functionalized Ionic Liquid,” ACS Applied Energy Materials 2 (2019): 1685–1694, https://doi.org/10.1021/acsaem.8b01733.