Sequential Reactive Processing for the Synthesis of Branched Polypropylene and Propylene–Ethylene Copolymer
Jorge Guapacha
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Lidia M. Quinzani
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Correspondence:
Lidia M. Quinzani ([email protected])
Jorge Guapacha ([email protected])
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorMarcelo D. Failla
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Departamento de Ingeniería, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorJorge Guapacha
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Lidia M. Quinzani
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Correspondence:
Lidia M. Quinzani ([email protected])
Jorge Guapacha ([email protected])
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorMarcelo D. Failla
Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Bahía Blanca, Argentina
Departamento de Ingeniería, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
Contribution: Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorFunding: The authors received no specific funding for this work.
ABSTRACT
Polypropylene (PP) and random propylene–ethylene copolymer (PEC) with long-chain branches (LCB) have been synthesized from linear polymers by sequential melt reactive processing. The process starts with the grafting of low concentrations of maleic anhydride using an organic peroxide as a radical initiator. Then, halfway through the processing time, the chain-linking agent, m-xylylenediamine (XDA), is added to the reactive medium to generate branched molecular structures. The occurrence of grafting and chain-linking reactions was confirmed by infrared spectroscopy, size exclusion chromatography, and dynamic and transient extensional rheology. Branched polymers with up to ~1 branch per 1000 monomer units were achieved without largely altering the average molecular weights of the original materials and their tensile mechanical properties. The amount of LCB obtained in PEC practically doubles that in the branched PP. Properties such as maximum tensile stress, elastic modulus, and tensile stress at yield were found to be primarily a function of the molecular weight and crystallinity level of the polymers, and not of their degree of LCB. Altogether, the results demonstrate that grafting low concentrations of maleic anhydride onto the polymer with the addition of the chain-linking agent at half processing time is an efficient and practical method to produce polymers with improved melt strength.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. Gahleitner and C. Paulik, “ Polypropylene and Other Polyolefins,” in Brydson's Plastics Materials, 8th ed. (Oxford: Butterworth-Heinemann, 2017), 279–309.
10.1016/B978-0-323-35824-8.00011-6 Google Scholar
- 2 J. Karger-Kocsis and T. Bárány, eds., Polypropylene Handbook. Morphology, Blends and Composites (Switzerland AG: Springer Nature, 2019).
10.1007/978-3-030-12903-3 Google Scholar
- 3J. M. Dealy and J. Wang, Melt Rheology and Its Applications in the Plastics Industry, 2nd ed. (Dordrecht: Springer Science & Business Media, 2013).
10.1007/978-94-007-6395-1 Google Scholar
- 4A. Dashti and M. Ahmadi, “Recent Advances in Controlled Production of Long-Chain Branched Polyolefins,” Macromolecular Rapid Communications 45 (2024): 2300746.
- 5A. D. Gotsis, B. L. F. Zeevenhoven, and A. H. Hogt, “The Effect of Long Chain Branching on the Processability of Polypropylene in Thermoforming,” Polymer Engineering and Science 44 (2004): 973–982.
- 6M. Köster and G. P. Hellmann, “Chain Extension of Maleinated Poly(Propylene) by Reactive Extrusion,” Macromolecular Materials and Engineering 286 (2001): 769–773.
- 7H. Tang, W. Dai, and B. Chen, “A New Method for Producing High Melt Strength Polypropylene With Reactive Extrusion,” Polymer Engineering and Science 48 (2008): 1339–1344.
- 8S. Li, M. Xiao, Y. Guan, D. Wei, H. Xiao, and A. Zheng, “A novel strategy for the preparation of long chain branching polypropylene and the investigation on foamability and rheology,” European Polymer Journal 48 (2012): 362–371.
- 9K. El Mabrouk, J. S. Parent, B. I. Chaudhary, and R. Cong, “Chemical Modification of PP Architecture: Strategies for Introducing Long-Chain Branching,” Polymer 50 (2009): 5390–5397.
- 10K. Cao, Y. Li, Z. Q. Lu, et al., “Preparation and Characterization of High Melt Strength Polypropylene With Long Chain Branched Structure by the Reactive Extrusion Process,” Journal of Applied Polymer Science 121 (2011): 3384–3392.
- 11Z. Zhang, D. Wan, H. Xing, et al., “A New Grafting Monomer for Synthesizing Long Chain Branched Polypropylene Through Melt Radical Reaction,” Polymer 53 (2012): 121–129.
- 12Y. Li, Z. Yao, Z. H. Chen, S. L. Qiu, C. Zeng, and K. Cao, “Rheological Evidence of Physical Cross-Links and Their Impact in Modified Polypropylene,” Industrial and Engineering Chemistry Research 52 (2013): 7758–7767.
- 13D. Wan, L. Ma, H. Xing, et al., “Preparation and Characterization of Long Chain Branched Polypropylene Mediated by Different Heteroaromatic Ring Derivatives,” Polymer 54 (2013): 639–651.
- 14F. Kamleitner, B. Duscher, T. Koch, S. Knaus, K. Schmid, and V. M. Archodoulaki, “Influence of the Molar Mass on Long-Chain Branching of Polypropylene,” Polymers 9 (2017): 442.
- 15J. Guapacha, E. M. Vallés, M. D. Failla, and L. M. Quinzani, “Efficiency of Different Chain-Linking Agents in the Synthesis of Long-Chain Branched Polypropylene: Molecular, Thermal, and Rheological Characterization,” Polymer-Plastics Technology and Engineering 57 (2018): 1209–1224.
- 16J. Guapacha, J. Barbosa, E. M. Vallés, L. M. Quinzani, and M. D. Failla, “Improving Melt Strength of Polypropylene by Minimal Branching and Blending,” Journal of Applied Polymer Science 137 (2020): 48845.
- 17S. Stanic, T. Koch, K. Schmid, S. Knaus, and V. M. Archodoulaki, “Improving Rheological and Mechanical Properties of Various Virgin and Recycled Polypropylenes by Blending With Long-Chain Branched Polypropylene,” Polymers 13 (2021): 1137.
- 18C. Y. Tsai, C. S. Chang, and H.-J. Sue, “Quantification of Long-Chain Branching Molar Fraction in Polypropylene,” Industrial & Engineering Chemistry Research 60 (2021): 3770–3778.
- 19S. Y. Kim, M. C. Kim, H. Y. Song, K. Hyun, and S. C. Hong, “Preparation and Characteristics of Polypropylene With Long Chain Branches Utilizing the C–H Insertion Capability of Azidoformate,” Polymer Testing 116 (2022): 107792.
- 20F. Liu, C. Shen, X. Jiang, F. You, C. Yao, and Y. Shangguan, “Enhancing the Mechanical Properties and Foaming Performance of Polypropylene Through Melt Grafting Reaction by Using Trimethylolpropane Triacrylate,” Polymer Bulletin 80 (2023): 12447–12462.
- 21J. Guapacha, E. M. Vallés, M. D. Failla, and L. M. Quinzani, “Molecular, Rheological, and Thermal Study of Long-Chain Branched Polypropylene Obtained by Esterification of Anhydride Grafted Polypropylene,” Journal of Applied Polymer Science 131 (2014): 40357.
- 22J. Guapacha, E. M. Vallés, L. M. Quinzani, and M. D. Failla, “Long-Chain Branched Polypropylene Obtained Using an Epoxy Resin as Crosslinking Agent,” Polymer Bulletin 74 (2017): 2297–2318.
- 23L. N. Schmidt, J. Guapacha, L. M. Quinzani, and M. D. Failla, “Coloration and Branching of Polypropylene by Reactive Processing,” Journal of Applied Polymer Science 140 (2023): e54293.
- 24F. Berzin, J. J. Flat, and B. Vergnes, “Grafting of Maleic Anhydride on Polypropylene by Reactive Extrusion: Effect of Maleic Anhydride and Peroxide Concentrations on Reaction Yield and Products Characteristics,” Journal of Polymer Engineering 33 (2013): 673–682.
- 25P. Tiwary, H. Gui, P. L. Ferreira, and M. Kontopoulou, “Coagent Modified Polypropylene Prepared by Reactive Extrusion: A New Look Into the Structure-Property Relations of Injection Molded Parts,” International Polymer Processing 31 (2016): 433–441.
- 26S. N. Mousavi, M. Entezam, M. T. Müller, M. Tavakol, and H. A. Khonakdar, “Molecular and Thermo-Mechanical Assessment of Long-Chain Branched Polypropylene: Effect of Irradiation Dose, Multifunctional Monomer Content and Molecular Weight,” Radiation Physics and Chemistry 212 (2023): 111186.
- 27J. Cao, N. Wen, and Y. Y. Zheng, “Effect of Long Chain Branching on the Rheological Behavior, Crystallization and Mechanical Properties of Polypropylene Random Copolymer,” Chinese Journal of Polymer Science 34 (2016): 1158–1171.
- 28V. Riechert, L. M. Quinzani, and M. D. Failla, “Linear Viscoelasticity, Extensional Viscosity, and Oxygen Permeability of Nanocomposites Based on Propylene Copolymer and Organoclay,” Journal of Applied Polymer Science 135 (2018): 45840.
- 29S. Caveda, E. Pérez, E. Blázquez-Blázquez, et al., “Influence of Structure on the Properties of Polypropylene Copolymers and Terpolymers,” Polymer Testing 62 (2017): 23–32.
- 30V. Riechert, A. Ferrofino, L. M. Quinzani, and M. D. Failla, “Rheological Properties and UV Photo-Oxidation of Montmorillonite-Filled Random Propylene–Ethylene Copolymers,” Polymer Bulletin 80 (2023): 3981–4004.
- 31V. M. Riechert, A. G. Ferrofino, J. A. Ressia, M. D. Failla, and L. M. Quinzani, “Modification of Propylene-α-Olefin Copolymers by Maleic Anhydride Grafting and Blending,” International Journal of Polymer Analysis and Characterization 24 (2019): 355–373.
- 32J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, 4th ed. (New York: J. Wiley & Sons, 1999).
- 33J. A. Langston, R. H. Colby, T. M. Chung, F. Shimizu, T. Suzuki, and M. Aoki, “Synthesis and Characterization of Long Chain Branched Isotactic Polypropylene via Metallocene Catalyst and T-Reagent,” Macromolecules 40 (2007): 2712–2720.
- 34C. O. Rohlmann, M. F. Horst, L. M. Quinzani, and M. D. Failla, “Comparative Analysis of Nanocomposites Based on Polypropylene and Different Montmorillonites,” European Polymer Journal 44 (2008): 2749–2760.
- 35R. P. Lagendijk, A. H. Hogt, A. Buijtenhuijs, and A. D. Gotsis, “Peroxydicarbonate Modification of Polypropylene and Extensional Flow Properties,” Polymer 42 (2001): 10035–10043.
- 36X. C. Zhang, M. F. Butler, and R. E. Cameron, “The Ductile–Brittle Transition of Irradiated Isotactic Polypropylene Studied Using Simultaneous Small Angle X-Ray Scattering and Tensile Deformation,” Polymer 41 (2000): 3797–3807.
- 37C. Stern, A. Frick, and G. Weickert, “Relationship Between the Structure and Mechanical Properties of Polypropylene: Effects of the Molecular Weight and Shear-Induced Structure,” Journal of Applied Polymer Science 103 (2007): 519–533.
- 38R. Benavente, S. Caveda, E. Pérez, et al., “Influence of β-Nucleation on Polymorphism and Properties in Random Copolymers and Terpolymers of Propylene,” Polymer Engineering and Science 52 (2012): 2285–2295.
- 39M. A. Kennedy, A. J. Peacock, M. D. Failla, J. C. Lucas, and L. Mandelkern, “Tensile Properties of Crystalline Polymers: Random Copolymers of Ethylene,” Macromolecules 28 (1995): 1407–1421.
- 40J. Li, Z. Zhu, T. Li, X. Peng, S. Jiang, and L. S. Turng, “Quantification of the Young's Modulus for Polypropylene: Influence of Initial Crystallinity and Service Temperature,” Journal of Applied Polymer Science 137 (2020): 48581.