Liquefied-chitin polyurethane foam construction of high-efficiency solar evaporator for seawater purification
Lihong Wan
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Data curation (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorSitong Yan
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Conceptualization (lead), Data curation (supporting)
Search for more papers by this authorLin Fang
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Conceptualization (supporting), Data curation (supporting), Visualization (supporting)
Search for more papers by this authorCorresponding Author
Zhifen Wang
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Correspondence
Zhifen Wang, College of Materials Science and Engineering, Hainan University, Haikou 570228, China.
Email: [email protected]
Yucang Zhang, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.
Email: [email protected]
Contribution: Methodology (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Yucang Zhang
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
Correspondence
Zhifen Wang, College of Materials Science and Engineering, Hainan University, Haikou 570228, China.
Email: [email protected]
Yucang Zhang, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.
Email: [email protected]
Contribution: Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorLihong Wan
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Data curation (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorSitong Yan
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Conceptualization (lead), Data curation (supporting)
Search for more papers by this authorLin Fang
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Contribution: Conceptualization (supporting), Data curation (supporting), Visualization (supporting)
Search for more papers by this authorCorresponding Author
Zhifen Wang
College of Materials Science and Engineering, Hainan University, Haikou, 570228 China
Correspondence
Zhifen Wang, College of Materials Science and Engineering, Hainan University, Haikou 570228, China.
Email: [email protected]
Yucang Zhang, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.
Email: [email protected]
Contribution: Methodology (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Yucang Zhang
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
Correspondence
Zhifen Wang, College of Materials Science and Engineering, Hainan University, Haikou 570228, China.
Email: [email protected]
Yucang Zhang, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.
Email: [email protected]
Contribution: Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
As key platforms for efficient photothermal conversion and water evaporation in solar water desalination processes, the design of photothermal interface materials have become an important topic. In this study, we designed an interfacial solar evaporator with liquefied-chitin PU foams as the base material. In this structure, polyaniline and polypyrrole convert solar energy in thermal energy. After the in-situ generation of hydrogel in the polyurethane foam to reduce the evaporation enthalpy of water and rapid evaporation of water. Liquefied-chitin make a PU foam with low thermal conductivity, reduce the heat loss of the water. Notably, the excellent antibacterial property of liquefied-chitin PU foam can make the photothermal material less likely to grow bacteria in the water and affect the photothermal evaporation efficiency. The water evaporation rates of PANi/PAM and PPy/PAM reached 2.18 and 2.38 kg m−2 h−1 under 1 solar irradiation, with photothermal conversion efficiencies of 136.9% and 149.4%, respectively. This study provides a simple method for converting polymers-based foam into efficient solar thermal materials for solar-driven desalination-related applications.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1I. Ullah, M. G. Rasul, Energies 2019, 12, 119.
- 2S. Zhang, J. Huang, Z. Chen, Y. Lai, Small 2017, 13, 1602992.
- 3S. Sardar, S. K. Pal, Nanotechnol. Rev. 2016, 5, 113.
- 4X. Zhang, W. Zhao, Y. Zhang, V. Jegatheesan, Rev. Environ. Sci. Bio-Technol. 2021, 20, 333.
- 5D. J. Lapworth, N. Baran, M. E. Stuart, R. S. Ward, Environ. Pollut. 2012, 163, 287.
- 6R. Verbeke, V. Gomez, I. F. J. Vankelecom, Prog. Polym. Sci. 2017, 72, 1.
- 7Y. Xu, J. Ma, D. Liu, H. Xu, F. Cui, W. Wang, Chem. Eng. J. 2019, 356, 869.
- 8L. Zhou, X. Li, G. W. Ni, S. Zhu, J. Zhu, Natl. Sci. Rev. 2019, 6, 562.
- 9L. Huidong, H. Zhi, L. Kang, H. Xuejiao, Z. Jun, Adv. Energy Mater. 2019, 9, 1900310.
- 10G. Ni, G. Li, S. V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Nat. Energy 2016, 1, 16126.
- 11S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, Sci. Rep. 2015, 5, 13600.
- 12W. Li, X. Tian, X. Li, S. Han, C. Li, X.-Z. Zhai, Y. Kang, Z.-Z. Yu, J. Mater. Chem. A 2021, 9, 14859.
- 13M. Chen, X. Lin, C. Zeng, Q. He, Colloids Surf. A – Physicochem. Eng. Aspects 2021, 612, 125997.
- 14M. J. Ahmed, B. H. Hameed, E. H. Hummadi, Carbohydr. Polym. 2020, 247, 116690.
- 15F. M. Dela Rosa, J. Papac, S. Garcia-Ballesteros, M. Kovačić, Z. Katančić, H. Kušić, A. L. Božić, Adv. Sustain. Syst. 2021, 5, 2100119.
- 16K. Wang, Z. Cheng, P. Li, Y. Zheng, Z. Liu, L. Cui, J. Xu, J. Liu, J. Colloid Interface Sci. 2021, 581, 504.
- 17Y. Peng, Y. Wang, W. Li, J. Jin, J. Mater. Chem. A 2021, 9, 10678.
- 18Z. Li, X. Ma, D. Chen, X. Wan, X. Wang, Z. Fang, X. Peng, Adv. Sci. 2021, 8, 2004552.
- 19K. Yongmin, L. Seokmin, K. Cheong Hoon, L. Seung Woo, C. Jinhan, Adv. Energy Mater. 2021, 11, 2170108.
10.1002/aenm.202170108 Google Scholar
- 20K. Bae, B. J. Ku, Y. Kim, A. Mnoyan, K. Lee, K. J. Lee, ACS Appl. Mater. Interfaces 2019, 11, 4531.
- 21B. Li, S. Wu, X. Gao, Nanotechnol. Rev. 2020, 9, 1080.
- 22W. Jiao, W. Shen, Z. U. Rahman, D. Wang, Nanotechnol. Rev. 2016, 5, 135.
- 23J. Zhang, W.-R. Xu, Y. Zhang, W. Li, J. Hu, F. Zheng, Y. Wu, Carbohydr. Polym. 2018, 180, 175.
- 24D. Jeong, C. Kim, Y. Kim, S. Jung, Eur. Polym. J. 2020, 247, 109586.
- 25X. Mu, L. Chen, N. Qu, J. Yu, X. Jiang, C. Xiao, X. Luo, Q. Hasi, J. Colloid Interface Sci. 2023, 636, 291.
- 26Y. Xu, D. Liu, H. Xiang, S. Ren, Z. Zhu, D. Liu, H. Xu, F. Cui, W. Wang, J. Membr. Sci. 2019, 586, 222.
- 27C. Qiaomei, P. Zhiqiang, X. Yanshuang, L. Zhen, Y. Yang, W. Yen, J. Yan, Chem. Sci. 2017, 9, 623.
- 28Y. Zou, X. Chen, W. Guo, X. Liu, Y. Li, ACS Appl. Energy Mater. 2020, 3, 2634.
- 29A. Kausar, Polym. – Plast. Technol. Mater. 2017, 57, 346.
- 30N. Mahmood, Z. Yuan, J. Schmidt, C. Xu, Bioresour. Technol. 2013, 139, 13.
- 31J. Zhang, W.-R. Xu, Y. Zhang, W. Li, J. Hu, F. Zheng, Y. Wu, Carbohydr. Polym. 2017, 180, 175.
- 32S. Lee, C. H. Park, Text. Res. J. 2019, 89, 2376.
- 33Q. Zhao, Y. Wan, F. Chang, Y. Wang, H. Jiang, L. Jiang, X. Zhang, N. Ma, Desalination 2022, 527, 115581.
- 34Y. Wang, J. Li, B. Li, J. Agric. Food Chem. 2016, 64, 5736.
- 35J. Li, H. Wang, Y. Hou, W. Yu, S. Xu, Y. Zhang, Eur. J. Org. Chem. 2016, 2016, 2388.
- 36S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, J. Mater. Chem. C 2020, 8, 528.
- 37Y. Zhang, T. Xiong, D. K. Nandakumar, S. C. Tan, Adv. Sci. 2020, 7, 1903478.
- 38S. Zhou, S. Huang, Y. Ming, Y. Long, H. Liang, S. Ruan, Y.-J. Zeng, H. Cui, J. Mater. Chem. A 2021, 9, 9909.
- 39L. Shi, X. Wang, Y. Hu, Y. He, Y. Yan, Appl. Therm. Eng. 2020, 179, 115691.
- 40G. Hadi, N. George, M. Amy Marie, L. James, Y. Selcuk, M. Nenad, C. Gang, Nat. Commun. 2014, 5, 4449.
- 41Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, G. Yu, Adv. Mater. 2020, 32, 1907061.
- 42X. Dong, S. Gao, S. Li, T. Zhu, J. Huang, Z. Chen, Y. Lai, Mater. Chem. Front. 2021, 5, 1510.
- 43H. Yu, Y. Shi, A. Ding, J. Liao, H. Gui, Y. Chen, Polymer 2022, 14, 1486.
- 44Y. Guo, X. Zhou, F. Zhao, J. Bae, B. Rosenberger, G. Yu, ACS Nano 2019, 13, 7913.
- 45F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489.
- 46X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 2019, 5, eaaw5484.
- 47X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, Energy Environ. Sci. 2018, 11, 1985.
- 48F.-Y. Zheng, R. Li, J. Hu, J. Zhang, X. Han, X. Wang, W.-R. Xu, Y. Zhang, Carbohydr. Polym. 2019, 205, 550.
- 49Y. Li, M. Zhao, Y. Xu, L. Chen, T. Jiang, W. Jiang, S. Yang, Y. Wang, J. Mater. Chem. A 2019, 7, 26769.
- 50N. Yan, X. Chen, Nature 2015, 524, 155.
- 51Y. Wang, X. Wu, T. Gao, Y. Lu, X. Yang, G. Y. Chen, G. Owens, H. Xu, Nano Energy 2021, 79, 105477.