Polyethylene with MoS2 nanoparticles toward antibacterial active packaging
Pedro Castillo
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
Contribution: Investigation (equal), Methodology (lead)
Search for more papers by this authorLeire Goñi-Ciaurriz
Department of Chemistry, Faculty of Sciences, University of Navarra, Pamplona, Spain
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorFelipe Olate-Moya
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
Contribution: Investigation (supporting), Methodology (equal)
Search for more papers by this authorRoberto Bastías
Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Contribution: Methodology (lead), Supervision (equal)
Search for more papers by this authorSara Farias
Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Contribution: Methodology (equal)
Search for more papers by this authorCorresponding Author
Humberto Palza
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
Correspondence
Humberto Palza, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Email: [email protected]
Contribution: Conceptualization (lead), Formal analysis (equal), Funding acquisition (lead), Investigation (equal)
Search for more papers by this authorPedro Castillo
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
Contribution: Investigation (equal), Methodology (lead)
Search for more papers by this authorLeire Goñi-Ciaurriz
Department of Chemistry, Faculty of Sciences, University of Navarra, Pamplona, Spain
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorFelipe Olate-Moya
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
Contribution: Investigation (supporting), Methodology (equal)
Search for more papers by this authorRoberto Bastías
Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Contribution: Methodology (lead), Supervision (equal)
Search for more papers by this authorSara Farias
Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Contribution: Methodology (equal)
Search for more papers by this authorCorresponding Author
Humberto Palza
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
Correspondence
Humberto Palza, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Email: [email protected]
Contribution: Conceptualization (lead), Formal analysis (equal), Funding acquisition (lead), Investigation (equal)
Search for more papers by this authorFunding information: ANID, Grant/Award Numbers: 1200093, EQM150101; ANID/BASAL, Grant/Award Number: FB210024
Abstract
Molybdenum disulfide (MoS2) nanoparticles, obtained from liquid phase exfoliation in the presence of chitosan, were melt mixed with a linear low-density polyethylene (LLDPE) matrix to produce novel antimicrobial active packaging materials. The LLDPE/MoS2 composites presented exfoliated nanoparticles forming aggregates that are well dispersed in the polymer matrix. These 2D-layered MoS2 nanoparticles at concentrations of 0.5, 1.0, and 3.0 wt% rendered several functionalities to the LLDPE, as for example an antimicrobial behavior against Salmonella typhi and Listeria monocytogenes bacteria that can be explained not only by the photoactivity of the filler but also by changes in the composite surface. For instance, the composites presented a reduction in the water contact angle (i.e., an increased hydrophilicity) and relevant changes in the surface topography (i.e., reduced roughness) as compared with pure LLDPE. Regarding the barrier properties, while MoS2 dramatically increased the water vapor permeation (WVP) of the polymer matrix, until 15 times for composite with 3.0 wt% of filler, the oxygen permeation decreased around 25%. All these novel functionalities in the nanocomposites were obtained without significantly affecting the tensile mechanical properties of the pure LLDPE matrix. These results show that MoS2 is a promising filler for the development of antibacterial active packaging films with behaviors as similar as other 2D-layered fillers such as graphene derivatives.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
app53323-sup-0001-Supinfo.docxWord 2007 document , 25.5 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. Soltani Firouz, K. Mohi-Alden, M. Omid, Food Res. Int. 2021, 141, 110113.
- 2G. L. Robertson, Food Packaging: Principles and Practice, 3rd ed., CRC Press, Boca Raton, Florida, USA 2012.
- 3Y. Yu, J. Zheng, J. Li, L. Lu, J. Yan, L. Zhang, L. Wang, Trends Food Sci. Technol. 2021, 110, 443.
- 4R. Silva-Leyton, R. Quijada, R. Bastías, N. Zamora, F. Olate-Moya, H. Palza, Compos. Sci. Technol. 2019, 184, 107888.
- 5Y. A. Arfat, J. Ahmed, M. Ejaz, M. Mullah, Int. J. Biol. Macromol. 2018, 107, 194.
- 6A. P. A. de Carvalho, C. A. Conte Junior, Trends Food Sci. Technol. 2020, 103, 130.
- 7H. Almasi, M. Jahanbakhsh Oskouie, A. Saleh, Crit. Rev. Food Sci. Nutr. 2021, 61, 2601.
- 8U. Costantino, V. Bugatti, G. Gorrasi, F. Montanari, M. Nocchetti, L. Tammaro, V. Vittoria, ACS Appl. Mater. Interfaces 2009, 1, 668.
- 9G. Gorrasi, A. Sorrentino, Layered Double Hydroxide Polymer Nanocomposites, Elsevier, Sawston, UK 2020, p. 743.
10.1016/B978-0-08-101903-0.00018-0 Google Scholar
- 10Z. Wang, B. Mi, Environ. Sci. Technol. 2017, 51, 8229.
- 11Z. Xu, J. Lu, X. Zheng, B. Chen, Y. Luo, M. N. Tahir, B. Huang, X. Xia, X. Pan, J. Hazard. Mater. 2020, 399, 123057.
- 12A. S. Sethulekshmi, J. S. Jayan, S. Appukuttan, K. Joseph, Phys. E Low-Dimens. Syst. Nanostruct. 2021, 132, 114716.
- 13X. Wang, W. Xing, X. Feng, L. Song, Y. Hu, Polym. Rev. 2017, 57, 440.
- 14Z. Matusinovic, R. Shukla, E. Manias, C. G. Hogshead, C. A. Wilkie, Polym. Degrad. Stab. 2012, 97, 2481.
- 15K. Zhou, J. Liu, P. Wen, Y. Hu, Z. Gui, Appl. Surf. Sci. 2014, 316, 237.
- 16C. L. C. Rodriguez, M. A. B. S. Nunes, P. S. Garcia, G. J. M. Fechine, Polym. Test. 2021, 93, 106882.
- 17P. Chen, X. Liang, Y. Xu, Y. Zhou, W. Nie, Appl. Surf. Sci. 2018, 440, 1143.
- 18S. Thakur, P. Bandyopadhyay, S. H. Kim, N. H. Kim, J. H. Lee, Compos. Part A Appl. Sci. Manuf. 2018, 110, 284.
- 19J. Zhang, W. Lei, J. Schutz, D. Liu, B. Tang, C. H. Wang, X. Wang, J. Polym. Sci. Part B: Polym. Phys. 2019, 57, 406.
- 20X. Feng, B. Wang, X. Wang, P. Wen, W. Cai, Y. Hu, K. M. Liew, Chem. Eng. J. 2016, 295, 278.
- 21X. Feng, P. Wen, Y. Cheng, L. Liu, Q. Tai, Y. Hu, K. M. Liew, Compos. Part A: Appl. Sci. Manuf. 2016, 81, 61.
- 22X. Feng, X. Wang, W. Xing, K. Zhou, L. Song, Y. Hu, Compos. Sci. Technol. 2014, 93, 76.
- 23M. U. Arshad, H. Raza, M. B. Khan, A. Hussain, Polym. Test. 2020, 90, 106646.
- 24X. Feng, W. Xing, H. Yang, B. Yuan, L. Song, Y. Hu, K. M. Liew, ACS Appl. Mater. Interfaces 2015, 7, 13164.
- 25V. S Wadi, K. K. Jena, K. Halique, S. M. Alhassan, ACS Omega 2020, 5, 11394.
- 26S.-C. Shi, P. K. Mandal, T.-H. Chen, Polymers 1838, 2021, 13.
- 27X. Wang, W. Xing, X. Feng, B. Yu, L. Song, G. H. Yeoh, Y. Hu, Compos. Sci. Technol. 2016, 127, 142.
- 28W. Cao, L. Yue, Z. Wang, Carbohydr. Polym. 2019, 215, 226.
- 29W. Cao, L. Yue, I. M. Khan, Z. Wang, J. Photochem. Photobiol., A 2020, 401, 112762.
- 30W. Cao, L. Yue, Y. Zhang, Z. Wang, Carbohydr. Polym. 2022, 277, 118808.
- 31Z. Feng, X. Liu, L. Tan, Z. Cui, X. Yang, Z. Li, Y. Zheng, K. W. K. Yeung, S. Wu, Small 2018, 14, 1704347.
- 32H. Shen, C. Jiang, W. Li, Q. Wei, R. A. Ghiladi, Q. Wang, ACS Appl. Mater. Interfaces 2021, 13, 31193.
- 33T. P. Nguyen, W. Sohn, J. H. Oh, H. W. Jang, S. Y. Kim, J. Phys. Chem. C 2016, 120, 10078.
- 34J. Wang, W. Zhang, Y. Wang, W. Zhu, D. Zhang, Z. Li, J. Wang, Part. Part. Syst. Charact. 2016, 33, 825.
- 35P. Joensen, E. D. Crozier, N. Alberding, R. F. Frindt, J. Phys. C Solid State Phys. 1987, 20, 4043.
- 36Z. Tang, Q. Wei, B. Guo, Chem. Commun. 2014, 50, 3934.
- 37D. Wang, L. Song, K. Zhou, X. Yu, Y. Hu, J. Wang, J. Mater. Chem. A 2015, 3, 14307.
- 38C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
- 39H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 2012, 22, 1385.
- 40S. S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang, V. P. Dravid, J. Am. Chem. Soc. 2013, 135, 4584.
- 41S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui, A. Jaiswal, ACS Appl. Bio Mater. 2019, 2, 2738.
- 42Y. Zare, Compos. Part A: Appl. Sci. Manuf. 2016, 84, 158.
- 43J. L. Koontz, Oxidative Stability and Shelf Life of Foods Containing Oils and Fats, Elsevier, London, UK 2016, p. 479.
10.1016/B978-1-63067-056-6.00013-6 Google Scholar
- 44L. K. Krehula, A. Papić, S. Krehula, V. Gilja, L. Foglar, Z. Hrnjak-Murgić, Polym. Bull. 2017, 74, 1387.
- 45D. Xuan, Y. Zhou, W. Nie, P. Chen, Carbohydr. Polym. 2017, 155, 40.
- 46J. Zhu, H. Wang, J. Liu, L. Ouyang, M. Zhu, Nanotechnology 2017, 28, 115604.
- 47H. Ma, Z. Shen, S. Ben, J. Colloid Interface Sci. 2018, 517, 204.
- 48T. Li, H. Sun, F. Lei, D. Li, J. Leng, L. Chen, Y. Huang, D. Sun, Polymer 2019, 172, 142.
- 49A. S. Goloveshkin, I. S. Bushmarinov, N. D. Lenenko, M. I. Buzin, A. S. Golub, M. Y. Antipin, J. Phys. Chem. C 2013, 117, 8509.
- 50N. Bandaru, R. S. Kumar, D. Sneed, O. Tschauner, J. Baker, D. Antonio, S.-N. Luo, T. Hartmann, Y. Zhao, R. Venkat, J. Phys. Chem. C 2014, 118, 3230.
- 51I. Ahmad, H.-K. Kim, S. Deveci, R. Kumar, Nanomaterials 2019, 9, 110.
- 52I. Rodriguez-Pastor, H. Varela-Rizo, D. R. Bortz, G. Montes de Oca, I. Guinea, I. Martin-Gullon, J. Appl. Polym. Sci. 2012, 126, 1437.
- 53X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Nanoscale 2014, 6, 10126.
- 54G. S. Bang, S. Cho, N. Son, G. W. Shim, B.-K. Cho, S.-Y. Choi, ACS Appl. Mater. Interfaces 1943, 2016, 8.
- 55H. Palza, B. Barraza, F. Olate-Moya, Annu. Rev. Mater. Res. 2022, 52, 1.
- 56H. Palza, R. Quijada, K. Delgado, J. Bioact. Compat. Polym. 2015, 30, 366.
- 57H. Palza, S. Gutiérrez, K. Delgado, O. Salazar, V. Fuenzalida, J. I. Avila, G. Figueroa, R. Quijada, Macromol. Rapid Commun. 2010, 31, 563.
- 58H. Palza, K. Delgado, I. Pinochet, J. Appl. Polym. Sci. 2015, 132.
- 59N. Basiron, S. Sreekantan, H. M. Akil, K. A. Saharudin, N. H. Harun, R. B. S. M. N. Mydin, A. Seeni, N. R. A. Rahman, F. Adam, A. Iqbal, V. Kumaravel, Nano-Struct. Nano-Obj. 2019, 19, 100359.
- 60K. Saharudin, S. Sreekantan, N. Basiron, Y. Khor, N. Harun, S. M. N. Mydin, H. Md Akil, A. Seeni, K. Vignesh, Polymers 2018, 10, 878.
- 61P. Basu, J. Chakraborty, N. Ganguli, K. Mukherjee, K. Acharya, B. Satpati, S. Khamrui, S. Mandal, D. Banerjee, D. Goswami, P. M. G. Nambissan, K. Chatterjee, ACS Appl. Mater. Interfaces 2019, 11, 48179.
- 62H. Palza, B. Barraza, F. Olate-Moya, Annu. Rev. Mater. Res. 2022, 52, 1.
- 63E. P. Ivanova, J. Hasan, H. K. Webb, V. K. Truong, G. S. Watson, J. A. Watson, V. A. Baulin, S. Pogodin, J. Y. Wang, M. J. Tobin, C. Löbbe, R. J. Crawford, Small 2012, 8, 2489.
- 64Y. H. An, R. J. Friedman, J. Biomed. Mater. Res. 1998, 43, 338.
10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 65H. Wang, S. Ding, Y. Dong, K. Ye, X. Xu, G. Zhou, J. Food Prot. 2013, 76, 1784.
- 66P. Arriagada, H. Palza, P. Palma, M. Flores, P. Caviedes, J. Biomed. Mater. Res. Part A 2018, 106, 1051.
- 67C. Angulo-Pineda, K. Srirussamee, P. Palma, V. M. Fuenzalida, S. H. Cartmell, H. Palza, Nanomaterials 2020, 10, 428.
- 68J. Xie, H. Wang, Z. Wang, Q. Zhao, Y. Yang, G. I. N. Waterhouse, L. Hao, Z. Xiao, J. Xu, Sci. Rep. 2018, 8, 52.
- 69E. W. McAllister, L. C. Carey, P. G. Brady, R. Heller, S. G. Kovacs, Gastrointest. Endosc. 1993, 39, 422.
- 70R. J. Crawford, H. K. Webb, V. K. Truong, J. Hasan, E. P. Ivanova, Adv. Colloid Interface Sci. 2012, 179–182, 142.
- 71S. M. Kelleher, O. Habimana, J. Lawler, B. O' Reilly, S. Daniels, E. Casey, A. Cowley, ACS Appl. Mater. Interfaces 2016, 8, 14966.
- 72N. Encinas, C.-Y. Yang, F. Geyer, A. Kaltbeitzel, P. Baumli, J. Reinholz, V. Mailänder, H.-J. Butt, D. Vollmer, ACS Appl. Mater. Interfaces 2020, 12, 21192.
- 73R. Pal, J. Colloid Interface Sci. 2008, 317, 191.
- 74A. J. Petsi, V. N. Burganos, J. Membr. Sci. 2012, 421–422, 247.
- 75E. Erdtman, M. Bohlén, P. Ahlström, T. Gkourmpis, M. Berlin, T. Andersson, K. Bolton, J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 589.
- 76J. Wang, D. J. Gardner, N. M. Stark, D. W. Bousfield, M. Tajvidi, Z. Cai, ACS Sustainable Chem. Eng. 2018, 6, 49.
- 77J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, Polymer 2011, 52, 5.
- 78H. Palza, M. Rojas, E. Cortez, R. Palma, P. Zapata, Compos. Part B: Eng. 2016, 107, 97.
- 79H. Palza, M. Yazdani-Pedram, Macromol. Mater. Eng. 2010, 295, 48.
- 80L. M. Farigliano, P. A. Paredes-Olivera, E. M. Patrito, J. Phys. Chem. C 2020, 124, 13177.
- 81K. Yao, J. D. Femi-Oyetoro, S. Yao, Y. Jiang, L. El Bouanani, D. C. Jones, P. A. Ecton, U. Philipose, M. El Bouanani, B. Rout, A. Neogi, J. M. Perez, 2D Mater. 2019, 7, 015024.
10.1088/2053-1583/ab5971 Google Scholar
- 82P. Afanasiev, C. Lorentz, J. Phys. Chem. C 2019, 123, 7486.