Enhanced thermal conductivity and insulation properties of mica tape with BN coating via electrostatic spraying technology
Corresponding Author
Yu Feng
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Correspondence
Yu Feng and Qingguo Chen, Harbin University of Science and Technology, Harbin 150080, China.
Email: [email protected] and [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorZiyuan He
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Writing - review & editing (equal)
Search for more papers by this authorZhijie Yang
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorWenxin Tang
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Data curation (supporting)
Search for more papers by this authorQingguo Chi
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Supervision (supporting)
Search for more papers by this authorCorresponding Author
Qingguo Chen
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Correspondence
Yu Feng and Qingguo Chen, Harbin University of Science and Technology, Harbin 150080, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Yu Feng
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Correspondence
Yu Feng and Qingguo Chen, Harbin University of Science and Technology, Harbin 150080, China.
Email: [email protected] and [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorZiyuan He
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Writing - review & editing (equal)
Search for more papers by this authorZhijie Yang
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorWenxin Tang
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Data curation (supporting)
Search for more papers by this authorQingguo Chi
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Contribution: Supervision (supporting)
Search for more papers by this authorCorresponding Author
Qingguo Chen
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Correspondence
Yu Feng and Qingguo Chen, Harbin University of Science and Technology, Harbin 150080, China.
Email: [email protected] and [email protected]
Search for more papers by this authorFunding information: China Postdoctoral Science Foundation, Grant/Award Number: 2020T130156; Fundamental Research Foundation for Universities of Heilongjiang Province, Grant/Award Numbers: 2019-KYYWF-0207, 2018-KYYWF-1624; Heilongjiang Postdoctoral Financial Assistance, Grant/Award Number: LBH-Z18098; National Natural Science Foundation of China, Grant/Award Numbers: 52177017, 51807041, U20A20308, 51977050; Natural Science Foundation of Heilongjiang Province of China, Grant/Award Numbers: YQ2021E036, ZD2020E009; University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, Grant/Award Number: UNPYSCT-2020177
Abstract
The bottleneck problem of the development of high-voltage motors to a larger capacity can be solved if the thermal conductivity is improved without sacrificing the insulation characteristics of the main insulation material. In this paper, a spraying technology based on electrospinning is proposed that can evenly spray boron nitride (BN) with high thermal conductivity onto the surface of mica tape. With the increase in BN content, the insulation and thermal conductivity of mica tape are optimized to varying degrees. When the BN content reaches 2.25 wt%, the in-plane conductivity increases from 1.6 to 2.7 w/(m K), while the out-of-plane conductivity increases from 0.17 to 0.26 w/(m K). Additionally, the direct-current (DC) breakdown strength has increased from 90.6 to 96.9 kV/mm and the dielectric constant and dielectric loss are almost unchanged. Finally, through simulation verification, if the modified mica tape is applied to the main insulation of a synchronous motor, the operating temperature of the motor insulation will be reduced from 73.5 to 66.1°C. This study provides a new research idea for the preparation of high thermal conductivity insulating materials.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1K. George, S. Mohanty, M. Biswa, S. K. Nayak, J. Appl. Polym. Sci. 2021, 138, 49934.
- 2Q. G. Chen, B. G. Xi, J. F. Zhang, H. D. Yang, X. Y. Wang, M. H. Chi, J. Mater. Sci.: Mater. Electron. 2020, 31, 16583.
- 3Z. D. Shan, Q. G. Chen, Q. Fu, C. Feng, C. W. Huang, W. Zheng, Polym. Test. 2019, 77, 105901.
- 4Q. G. Chen, Q. H. Liu, M. H. Chi, Y. H. Wang, X. L. Wei, Materials 2017, 10, 90.
- 5Z. D. Shan, Q. G. Chen, Q. Fu, IEEE Dielectr. Electr. Insul. 2020, 27, 574.
- 6H. D. Yang, Q. G. Chen, X. Y. Wang, M. H. Chi, H. Q. Liu, X. Ning, Polymer 2019, 11, 1359.
- 7M. R. Kessler, H. C. Wu, ACS Appl. Mater. Interfaces 2015, 7, 5915.
- 8S. G. Mosanenzadeh, S. Khalid, Y. Cui, H. E. Naguib, Polym. Compos. 2016, 37, 2196.
- 9M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, ACS Appl. Mater. Interfaces 2015, 7, 23725.
- 10K. C. Yung, T. Xu, H. S. Choy, J. Mater. Sci.: Mater. Electron. 2016, 27, 5217.
- 11Y. L. Wu, F. Li, J. N. Huyan, X. R. Zou, Y. Li, J. Appl. Polym. Sci. 2015, 132, 41951.
- 12F. F. Wang, Y. M. Yao, X. L. Zeng, T. Huang, R. Sun, J. B. Xu, C. P. Wong, RSC Adv. 2016, 6, 41630.
- 13S. T. Li, S. H. Yu, Y. Feng, High Voltage 2016, 1, 122.
- 14X. Meng, B. X. Du, High Voltage 2016, 1, 34.
- 15Z. D. Wang, M. M. Yang, Y. H. Cheng, J. Y. Liu, B. Xiao, S. Y. Chen, J. L. Huang, Q. Xie, G. L. Wu, H. J. Wu, Compos. Part A: Appl. Sci. Manuf. 2019, 118, 302.
- 16T. Yao, K. Chen, T. Shao, C. Zhang, C. Y. Zhang, Y. Yang, IEEE Dielectr. Electr. Insul. 2020, 27, 528.
- 17D. X. Zou, X. Y. Huang, Y. K. Zhu, J. Chen, P. K. Jiang, Compos. Sci. Technol. 2019, 177, 88.
- 18Y. C. Wu, F. L. Lin, X. T. Lin, Y. J. Liu, L. J. Song, X. H. Hao, J. L. Li, S. L. Wang, J. Appl. Polym. Sci. 2021, 139, 51658.
- 19S. J. Wang, S. L. Zhong, Z. M. Dang, J. W. Zha, M. S. Zheng, in 2018 IEEE 2nd International Conference on Dielectrics, Budapest, 2018.
- 20Z. D. Wang, Y. H. Cheng, Y. Y. Shao, Q. Xie, G. L. Wu, in 2016 IEEE International Conference on Dielectrics, Montpellier, 2016.
- 21J. W. Gu, Q. Y. Zhang, J. Dang, C. Xie, Polym. Adv. Technol. 2012, 23, 1025.
- 22R. Kochetov, T. Andritsch, P. H. F. Morshuis, J. J. Smit, in 2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, West Lafayette, 2010.
- 23W. Wang, Y. Xia, Insul. Mater. 2014, 47, 6.
- 24G. C. Stevens, J. B. Smith, J. W. Wood, A. Lutz, US. 2012009408, 2012.
- 25Z. Jiang, W. Zhu, G. Xu, X. Xu, M. Wang, H. Chen, W. Huang, X. Ge, M. Lin, J. Mater. Chem. A 2020, 8, 9109.
- 26Y. Zhang, H. Wang, T. Xu, L. Y. Wu, H. T. Niu, X. H. He, N. Y. Wang, Y. G. Yao, J. Appl. Polym. Sci. 2022, 139, 265.
- 27X. Tan, Q. L. Yuan, M. T. Qiu, J. H. Yu, N. Jiang, C. T. Lin, W. Dai, J. Mater. Sci. Technol. 2022, 117, 238.
- 28K. Wenelska, P. Homa, S. Popovic, K. Maslana, E. Mijowska, Nanomaterials 2019, 9, 1637.
- 29T. Morishita, H. Okamoto, Y. Katagiri, M. Matsushita, K. Fukumori, Chem. Commun. 2015, 51, 12068.
- 30X. Wang, P. Wu, ACS Appl. Mater. Interfaces. 2018, 10, 2504.
- 31J. Sun, D. Wang, Y. M. Yao, X. l. Zeng, G. R. Pan, Y. Huang, J. T. Hu, R. Sun, J. B. Xu, C. P. Wong, High Voltage 2017, 2, 147.
- 32L. Wan, X. Zhang, G. L. Wu, A. L. Feng, High Voltage 2021, 2, 167.
- 33F. Jiang, C. Li, S. Na, Y. S. Li, D. Peng, High Voltage 2017, 2, 161.
- 34Y. Lin, X. Y. Huang, J. Chen, P. K. Jiang, High Voltage 2017, 2, 139.
- 35D. Y. Shen, M. J. Wang, Y. M. Wu, Z. D. Liu, Y. Cao, T. Wang, X. F. Wu, Q. T. Shi, K. W. Chee, W. Dai, H. Bai, D. Dai, J. L. Yu, N. Jiang, C. T. Lin, J. H. Yu, High Voltage 2017, 2, 154.
- 36W. Yang, W. J. Chen, Y. Zhou, C. Zhang, Z. Zhang, X. Chen, Y. S. Zhao, X. M. Bian, High Voltage 2020, 5, 598.
- 37N. Tang, S. Tanaka, Y. Takezawa, K. Kanie, J. Appl. Polym. Sci. 2021, 138, 51396.
- 38Y. Z. Wang, M. J. Qu, X. H. Wang, G. Y. Zhou, J. Appl. Polym. Sci. 2022, 139, 52399.
- 39Y. C. Lin, W. J. Deng, Y. Y. Rui, Y. Liu, G. Lu, J. Liu, J. Appl. Polym. Sci. 2022, 139, 52629.
- 40P. Wang, W. Lee, J. P. Corbett, H. K. William, M. V. Nguyen, D. A. Laleyan, Q. N. Wen, Y. P. Wu, A. Pandey, J. Gim, D. Wang, D. Y. Qiu, R. Hovden, M. Kira, J. T. Heron, J. A. Gupta, E. Kioupakis, Z. Mi, Adv. Mater. 2022, 34, 2201387.
- 41X. N. Zhou, S. S. Xu, Z. Y. Wang, L. Hao, Z. Q. Shi, J. P. Zhao, Q. G. Zhang, K. Ishizaki, B. Wang, J. F. Yang, Adv. Sci. 2022, 9, 2103592.
- 42L. Li, M. Li, Z. Zhang, Y. Qin, X. Shui, J. Xia, S. Xiong, B. Wang, Z. Zhang, X. Wei, X. Kong, P. Gong, T. Cai, Z. Pan, Y. Li, J. Fan, C. Lin, N. Jiang, J. Yu, J. Mater. Chem. A 2022, 18, 9922.
- 43Y. H. Zhang, W. Wang, F. Zhang, L. Q. Huang, K. Dai, C. B. Li, D. Liu, Y. X. Sun, D. H. Ren, J. Y. Wu, Q. B. Zheng, Carbon 2022, 189, 265.
- 44W. Y. Zhou, Y. Zhang, J. J. Wang, H. Li, W. H. Xu, B. Li, L. Q. Chen, Q. Wang, ACS Appl. Mater. Interfaces. 2020, 12, 46767.
- 45H. Wang, Y. Zhang, H. T. Niu, L. Y. Wu, X. H. He, T. Xu, N. Y. Wang, Y. G. Yao, Compos. Part B-Eng. 2022, 230, 109505.
- 46I. Tseng, J. Chang, S. L. Huang, M. H. Tsai, Polym. Int. 2013, 62, 827.
- 47M. A. Rehim, G. Turky, J. Appl. Polym. Sci. 2019, 136, 48253.
- 48R. Polansky, M. Polanská, Eng Fail Anal. 2015, 57, 334.
- 49R. Tian, X. H. Jia, M. Lan, J. Yang, S. Wang, Y. Li, D. Shao, L. Feng, H. J. Song, Chem. Eng. 2022, 446, 137255.
- 50H. Nguyen, A. Y. Mirza, W. Q. Chen, Y. Q. Liu, J. Ronzello, J. Chapman, A. M. Bazzi, Y. Cao, IEEE Access 2021, 9, 2274.
- 51Y. Feng, J. P. Xue, T. D. Zhang, Q. C. Chi, J. L. Li, Q. G. Chen, J. J. Wang, L. Q. Chen, Energy Storage Mater. 2022, 44, 73.
- 52M. J. Feng, Y. Feng, T. D. Zhang, Q. C. Chi, J. L. Li, Q. G. Chen, Q. Q. Lei, Adv. Sci. 2021, 8, 2102221.
- 53G. Liu, Y. Feng, T. D. Zhang, C. H. Zhang, Q. G. Chi, Y. Q. Zhang, Y. Zhang, Q. Q. Lei, J. Mater. Chem. A 2021, 9, 16384.
- 54J. Li, X. Liu, Y. Feng, J. Yin, Prog. Polym. Sci. 2022, 126, 191505.
- 55G. C. Li, X. G. Zhou, X. J. Li, Y. H. Wei, C. C. Hao, S. T. Li, Q. Q. Lei, High Voltage 2020, 5, 280.
- 56R. Zhang, X. Z. Liu, T. L. Zhang. C. Z. Xue, H.S. Chen, Y.Q. Li, in 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, 2016.
- 57N. S. Reddya, R. K. Jarialb, C. Ranga, Mater. Today: Proc. 2017, 4, 10643.
10.1016/j.matpr.2017.06.435 Google Scholar
- 58Y. Feng, W. X. Tang, Y. Zhang, T. D. Zhang, Y. N. Shang, Q. G. Chi, Q. G. Chen, Q. Q. Lei, High Voltage 2022, 7, 242.
- 59Y. N. Shang, Y. Feng, C. H. Zhang, T. D. Zhang, Q. Q. Lei, Q. G. Chi, J. Mater. Chem. A. 2022, 10, 15183.
- 60D. Yue, Y. Feng, X. X. Liu, J. H. Yin, W. C. Zhang, H. Guo, B. Su, Q. Q. Lei, Adv. Sci. 2022, 9, 2105773.