Development of high-performance partially biobased thermoset polyester using renewable building blocks from isosorbide, 1,3-propanediol, and fumaric acid
Corresponding Author
Mateus Hofmann
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Correspondence
Mateus Hofmann, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorMário Garrido
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMarina Machado
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting), Validation (supporting), Visualization (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJoão R Correia
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorJoão C Bordado
Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Mateus Hofmann
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Correspondence
Mateus Hofmann, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorMário Garrido
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMarina Machado
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting), Validation (supporting), Visualization (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJoão R Correia
Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorJoão C Bordado
Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Lisbon, Portugal
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorFunding information: CERENA of IST; CERIS, Grant/Award Number: UIDB/04625/2020; FCT, Grant/Award Number: PTDC/ECI-EGC/29597/2017; Agência Nacional da Inovação (ANI), Grant/Award Number: ANI 39769-31/SI/2017; Fundação para a Ciência e a Tecnologia (FCT), Grant/Award Numbers: SFRH/BD/04675/2020, SFRH/BD/139863/2018
Abstract
Research on biobased thermoset resins has been overlooked when compared with the rapid progress on biobased thermoplastics. The objective of this work was to develop unsaturated polyester prepolymers based on building blocks derived from renewable raw materials, namely, biobased isosorbide, 1,3-propanediol, and fumaric acid, with petroleum-derived phthalic anhydride. The prepolymers developed herein behaved as low-molecular weight macromolecules (oligoesters), with Mn varying between 1.2 and 1.5 kDa, but achieved a high bio-content of up to 87.1 wt%. The prepolymers were incorporated into reactive diluents comprising a blend of 2-hydroxyethyl methacrylate and styrene, formulated to be eco-friendlier and less toxic than typical styrene-only incorporation approach, thus resulting in resins with viscosities between 750 and 950 cP. These resins are suitable for use in various fiber-reinforced polymer production techniques, such as manual lamination, vacuum infusion, and pultrusion, having the benefit of presenting over 50 wt% of bio-content in some formulations. Moreover, the crosslinked polyester resins (thermosets) exhibit comparable mechanical and thermomechanical behavior to their petrochemical-based counterparts, with modulus of elasticity and tensile strength of up to 3.9 GPa and 62.1 MPa, respectively, and glass transition temperatures of up to 106°C, making them greener alternatives for high-performance structural applications.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
app53029-sup-0001-supinfo.docxWord 2007 document , 77 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354.
- 2V. V. Panic, S. I. Seslija, I. G. Popovic, V. D. Spasojevic, A. R. Popovic, V. B. Nikolic, P. M. Spasojevic, Biomacromolecules 2017, 18, 3881.
- 3A. K. Mohanty, S. Vivekanandhan, J.-M. Pin, M. Misra, Science 2018, 362, 536.
- 4N. P. Cheremisinoff, Advances in Engineering Fluid Mechanics: Multiphase Reactor and Polymerization System Hydrodynamics, Gulf Professional Publishing, Burlington 1996, p. 583.
- 5M. Unverferth, Fatty acid-derived branched polymer architectures, Karlsruher Institut für Technologie (KIT), Germany 2016.
- 6M. Kwiatkowska, I. Kowalczyk, K. Kwiatkowski, A. Szymczyk, Z. Rosłaniec, Polymer 2016, 99, 503.
- 7G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou, D. N. Bikiaris, Eur. Polym. J. 2016, 83, 202.
- 8A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G.-J. M. Gruter, J. F. J. Coelho, Polym. Chem. 2015, 6, 5961.
- 9M. Jiang, Q. Liu, Q. Zhang, C. Ye, G. Zhou, J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1026.
- 10F. S. Carta, C. R. Soccol, L. P. Ramos, J. D. Fontana, Bioresour. Technol. 1999, 68, 23.
- 11F. Guo, M. Wu, Z. Dai, S. Zhang, W. Zhang, W. Dong, J. Zhou, M. Jiang, F. Xin, Biochem. Eng. J. 2020, 153, 107397.
- 12S. Y. Lee, H. U. Kim, T. U. Chae, J. S. Cho, J. W. Kim, J. H. Shin, D. I. Kim, Y.-S. Ko, W. D. Jang, Y.-S. Jang, Nat. Catal. 2019, 2, 18.
- 13R. K. Saxena, P. Anand, S. Saran, J. Isar, Biotechnol. Adv. 2009, 27, 895.
- 14C. S. Lee, M. K. Aroua, W. M. A. W. Daud, P. Cognet, Y. Pérès-Lucchese, P.-L. Fabre, O. Reynes, L. Latapie, Renew. Sustain. Energy Rev. 2015, 42, 963.
- 15 M. Pagliaro Ed., Glycerol: The Renewable Platform Chemical, Elsevier, Amsterdam 2017, p. 23.
10.1016/B978-0-12-812205-1.00002-3 Google Scholar
- 16D. Braun, M. Bergmann, J. für Prakt. Chem./Chem.-Zeitung. 1992, 334, 298.
- 17S. Muñoz-Guerra, C. Lavilla, C. Japu, A. Martínez de Ilarduya, Green Chem. 2014, 16, 1716.
- 18C. Gioia, M. Vannini, P. Marchese, A. Minesso, R. Cavalieri, M. Colonna, A. Celli, Green Chem. 2014, 16, 1807.
- 19J. M. Sadler, F. R. Toulan, G. R. Palmese, J. J. La Scala, J. Appl. Polym. Sci. 2015, 132, 1.
- 20Y. Xu, G. Hua, M. Hakkarainen, K. Odelius, Biomacromolecules 2018, 19, 3077.
- 21S. Cousinet, A. Ghadban, I. Allaoua, F. Lortie, D. Portinha, E. Drockenmuller, J. Pascault, J. Polym. Sci. Part A Polym. Chem. 2014, 52, 3356.
- 22K. K. Ajekwene, in Acrylate Polymers for Advanced Applications (Ed: Á. S.-A. Deb), IntechOpen, London 2020.
- 23A. C. Fonseca, I. M. Lopes, J. F. J. Coelho, A. C. Serra, React. Funct. Polym. 2015, 97, 1.
- 24K. Liang, M. Dossi, D. Moscatelli, R. A. Hutchinson, Macromolecules 2009, 42, 7736.
- 25 ISO 16620–4, Plastics - biobased content - Part 4: Determination of biobased mass content; 1st ed.; Geneva, Switzerland, 2016.
- 26 ISO 13885, Gel permeation chromatography (GPC) - Part 1: Tetrahydrofuran (THF) as eluent; Geneva, Switzerland, 2008.
- 27 ISO 2884, Paints and varnishes - determination of viscosity using rotatory viscometers - Part 2: Disc or ball viscometer operated at a specified speed; Geneva, Switzerland, 2003.
- 28 ISO 527, Plastics - determination of tensile properties - Part 2: Test conditions for moulding and extrusion plastics; Geneva, Switzerland, 2012.
- 29 ASTM E1640, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis; West Conshohocken, Pennsylvania, 2018.
- 30L. W. Hill, Prog. Org. Coat. 1997, 31, 235.
- 31J. E. Mark, Rubber Chem. Technol. 1982, 55, 762.
- 32 ISO16620–1 Plastics - biobased content - Part 1: General principles; 1st ed.; Geneva, Switzerland, 2015.
- 33C. S. M. F. Costa, A. C. Fonseca, J. Moniz, M. Godinho, J. F. J. Coelho, A. C. Serra, Express Polym. Lett. 2017, 11, 885.
- 34H. R. Allcock, F. W. Lampe, J. E. Mark, in Contemporary Polymer Chemistry, 3rd ed. (Eds: H. R. Allcock, F. W. Lampe, J. E. Mark), Prentice Hall, New Jersey 2003.
- 35A. Fradet, M. Tessier, in Synthetic Methods in Step-Growth Polymers (Eds: M. E. Rogers, T. E. Long), Wiley Online Books; John Wiley & Sons, Inc., Hoboken 2003, p. 17.
10.1002/0471220523.ch2 Google Scholar
- 36K. G. Johnson, L. S. Yang, in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (Eds: J. Scheirs, T. E. Long), Wiley Online Books; John Wiley & Sons, Inc., Chichester 2004, p. 697.
10.1002/0470090685.ch21 Google Scholar
- 37E. E. Parker, E. W. Moffett, Ind. Eng. Chem. 1954, 46, 1615.
- 38F. R. Jones, in Brydson's Plastics Materials (Ed: M. Gilbert), Butterworth-Heinemann, Oxford 2017, p. 743.
10.1016/B978-0-323-35824-8.00026-8 Google Scholar
- 39G. R. Ferreira, J. R. Braquehais, W. N. Silva, F. Machado, Ind. Crop. Prod. 2015, 65, 14.
- 40L. Papadopoulos, L. Malletzidou, D. Patsiaoura, A. Magaziotis, E. Psochia, Z. Terzopoulou, K. Chrissafis, C. Markessini, E. Papadopoulou, D. N. Bikiaris, Appl. Sci. 2021, 11, 896.
- 41H. Kang, M. Li, Z. Tang, J. Xue, X. Hu, L. Zhang, B. Guo, J. Mat. Chem. B. 2014, 2, 7807.
10.1039/C4TB90127D Google Scholar
- 42A. S. M. Trino, C. S. M. F. Costa, A. C. Fonseca, I. Barata, E. Júlio, A. C. Serra, J. F. J. Coelho, React. Funct. Polym. 2016, 106, 24.
- 43B. A. J. Noordover, V. G. van Staalduinen, R. Duchateau, C. E. Koning, M. van Benthem, A. Mak, A. E. Heise, J. H. Frissen, Biomacromolecules 2006, 7, 3406.
- 44F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, J.-P. Pascault, Prog. Polym. Sci. 2010, 35, 578.
- 45A. Jahandideh, K. Muthukumarappan, Eur. Polym. J. 2016, 83, 344.
- 46D. Åkesson, M. Skrifvars, J. Seppälä, M. Turunen, A. Martinelli, A. Matic, J. Appl. Polym. Sci. 2009, 115, 480.
- 47A. Kandelbauer, G. Tondi, O. C. Zaske, S. H. Goodman, in Handbook of Thermoset Plastics (Eds: H. Dodiuk, S. H. B. T.-H. Goodman), William Andrew Publishing, Boston 2014, p. 111.
10.1016/B978-1-4557-3107-7.00006-3 Google Scholar
- 48H. Stutz, K.-H. Illers, J. Mertes, J. Polym. Sci. Part B Polym. Phys. 1990, 28, 1483.
- 49S. Cousinet, A. Ghadban, E. Fleury, F. Lortie, J.-P. Pascault, D. Portinha, Eur. Polym. J. 2015, 67, 539.
- 50J. M. Sadler, F. R. Toulan, A.-P. T. Nguyen, R. V. Kayea, S. Ziaee, G. R. Palmese, J. J. La Scala, Carbohydr. Polym. 2014, 100, 97.
- 51B. Z. Fidanovski, P. M. Spasojevic, V. V. Panic, S. I. Seslija, J. P. Spasojevic, I. G. Popovic, J. Mater. Sci. 2018, 53, 4635.
- 52J. Dai, S. Ma, N. Teng, X. Dai, X. Shen, S. Wang, X. Liu, J. Zhu, Ind. Eng. Chem. Res. 2017, 56, 2650.
- 53P. B. Bamane, K. K. Wadgaonkar, S. U. Chambhare, L. B. Mehta, R. N. Jagtap, Prog. Org. Coat. 2020, 147, 105743.
- 54A. F. Sousa, A. C. Fonseca, A. C. Serra, C. S. R. Freire, A. J. D. Silvestre, J. F. J. Coelho, Polym. Chem. 2016, 7, 1049.