Oxidized multiwalled carbon nanotube reinforced rheological examination on Gum ghatti-cl-poly(acrylic acid) hydrogels
Bhagvan Kamaliya
Department of Chemistry, Sardar Patel University, Vallabh Vidyangar, India
Contribution: Formal analysis (lead), Investigation (lead)
Search for more papers by this authorCorresponding Author
Pragnesh N. Dave
Department of Chemistry, Sardar Patel University, Vallabh Vidyangar, India
Correspondence
Pragnesh N. Dave, Department of Chemistry, Sardar Patel University, Vallabh Vidyangar 388120, Gujarat, India.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorPradip M. Macwan
B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust, Anand, India
Contribution: Data curation (supporting), Methodology (equal), Visualization (supporting), Writing - original draft (equal)
Search for more papers by this authorBhagvan Kamaliya
Department of Chemistry, Sardar Patel University, Vallabh Vidyangar, India
Contribution: Formal analysis (lead), Investigation (lead)
Search for more papers by this authorCorresponding Author
Pragnesh N. Dave
Department of Chemistry, Sardar Patel University, Vallabh Vidyangar, India
Correspondence
Pragnesh N. Dave, Department of Chemistry, Sardar Patel University, Vallabh Vidyangar 388120, Gujarat, India.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorPradip M. Macwan
B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust, Anand, India
Contribution: Data curation (supporting), Methodology (equal), Visualization (supporting), Writing - original draft (equal)
Search for more papers by this authorAbstract
The intention of the present study was to synthesize Gum ghatti-cl-poly(acrylic acid)/-o-MWCNT hydrogel by free radical copolymerization method where the role of various ingredients are as: Gum ghatti as biopolymer (GG), acrylic acid (AA) as a probe for synthetic monomer, ammonium persulfate as initiator and methylene bis-acrylamide (MBA) as a crosslinker. The oxidized multiwalled nanocarbon tubes (-o-MWCNT) with variable amounts (0–50 mg) were used as fillers. The as-prepared hydrogels were characterized by X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. The rheological investigation of hydrogels revealed that the storage modulus (G′) was always higher than the loss modulus (G″) in the linear viscoelastic region over the entire frequency range. The persistent covalence crosslinking is responsible for the solid-like behavior and elastic nature (G′ > G″). Hydrogels containing Gum ghatti-cl-poly(acrylic acid)/-o-MWCNT increased with strain. The nonlinear oscillatory shear increases by the addition -o-MWCNT. The features shown highlight the potential of Gum ghatti-cl-poly(acrylic acid)/-o-MWCNT hydrogels for agricultural, medicinal, and pharmaceutical applications.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
app52888-sup-0001-supinfo.docxWord 2007 document , 552.6 KB | APPENDIX S1 Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Kalia, A. Roy Choudhury, Int. J. Biol. Macromol. 2019, 137, 475.
- 2H. Li, J. Yang, X. Hu, J. Liang, Y. Fan, X. Zhang, J. Biomed. Mater. Res. Part A 2011, 98, 31.
- 3M. F. Akhtar, M. Hanif, N. M. Ranjha, Saudi Pharm. J. 2016, 24, 554.
- 4A. Ghorbanoghli, K. Narooei, Int. J. Mech. Sci. 2019, 159, 278.
- 5S. Iijima, Nature 1991, 354, 56.
- 6S. Subramoney, Adv. Mater. 1997, 9, 1193.
10.1002/adma.19970091518 Google Scholar
- 7Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, Compos. Sci. Technol. 2008, 68, 1644.
- 8B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, G. Pastorin, Adv. Drug Delivery Rev. 1964, 2013, 65.
- 9E. Badakhshanian, K. Hemmati, M. Ghaemy, Polymer 2016, 90, 282.
- 10M. Theodore, M. Hosur, J. Thomas, S. Jeelani, Mater. Sci. Eng., A 2011, 528, 1192.
- 11O. S. Bianchin, G. H. F. Melo, R. E. S. Bretas, J. Cell. Plast. 2021, 57, 210.
- 12A. B. Da Silva, J. Marini, G. Gelves, U. Sundararaj, R. Gregório, R. E. S. Bretas, Eur. Polym. J. 2013, 49, 3318.
- 13A. B. Da Silva, M. Arjmand, U. Sundararaj, R. E. S. Bretas, Polymer 2014, 55, 226.
- 14N. A. Zawawi, Z. A. Majid, N. A. A. Rashid, Colloid Polym. Sci. 1925, 2017, 295.
- 15E. Makhado, Doctoral Thesis, University of Johannesburg 2017.
- 16N. A. Mohamed, N. F. Al-Harby, M. S. Almarshed, Int. J. Biol. Macromol. 2019, 132, 416.
- 17A. Giri, T. Bhunia, L. Goswami, A. B. Panda, A. Bandyopadhyay, RSC Adv. 2015, 5, 41736.
- 18S. H. Yetgin, J. Mater. Res. Technol. 2019, 8, 4725.
- 19P. Pötschke, T. D. Fornes, D. R. Paul, Polymer 2002, 43, 3247.
- 20S. Mallakpour, S. Rashidimoghadam, Int. J. Biol. Macromol. 2020, 144, 389.
- 21R. Kotsilkova, S. Tabakova, R. Ivanova, Mech. Time-Depend. Mater. 2021. https://doi.org/10.1007/s11043-021-09503-2
- 22J. Qian, J. H. Pu, X. J. Zha, R. Y. Bao, Z. Y. Liu, M. B. Yang, W. Yang, J. Polym. Res. 2019, 26, 1.
- 23B. Mensah, H. G. Kim, J. H. Lee, S. Arepalli, C. Nah, Int. J. Smart Nano Mater. 2015, 6, 211.
- 24D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 2000, 76, 2868.
- 25L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 2012, 1197, 1.
- 26F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey, Macromolecules 2004, 37, 9048.
- 27G. Hu, C. Zhao, S. Zhang, M. Yang, Z. Wang, Polym. 2006, 47, 480.
- 28R. Arrigo, G. Malucelli, Materials 2020, 13, 1.
- 29S. Al-Assaf, V. Amar, G. O. Phillips, Gums and Stabilisers for the Food Industry, The Royal Society of Chemistry, London 2008, 14, p. 280. https://doi.org/10.1039/9781847558312-00280
- 30C. Scaman, Food Additives Data Book, Blackwell Science Ltd, West Sussex 2007, p. 700.
- 31G. Shelar-Lohar, S. Joshi, RSC Adv. 2019, 9, 41326.
- 32J. Gao, B. Zhao, M. E. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, R. C. Haddon, J. Am. Chem. Soc. 2006, 128, 7492.
- 33J. Paul, S. Sindhu, M. H. Nurmawati, S. Valiyaveettil, Appl. Phys. Lett. 2006, 89, 1.
- 34H. Liu, M. Liu, L. Zhang, L. Ma, J. Chen, Y. Wang, React. Funct. Polym. 2010, 70, 294.
- 35G. Stojkov, Z. Niyazov, F. Picchioni, R. K. Bose, Gels 2021, 7, 7.
- 36A. Vashist, A. Kaushik, A. Vashist, V. Sagar, A. Ghosal, Y. K. Gupta, S. Ahmad, M. Nair, Adv. Healthcare Mater. 2018, 7, 1.
- 37E. Tamahkar Irmak, Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 2017, 18, 1.
- 38A. Liu, I. Honma, M. Ichihara, H. Zhou, Nanotechnology 2006, 17, 2845.
- 39A. Giri, M. Bhowmick, S. Pal, A. Bandyopadhyay, Int. J. Biol. Macromol. 2011, 49, 885.
- 40E. Makhado, S. Pandey, P. N. Nomngongo, J. Ramontja, J. Colloid Interface Sci. 2018, 513, 700.
- 41M. Shanbedi, S. Z. Heris, A. Amiri, H. Eshghi, J. Taiwan Inst. Chem. Eng. 2016, 60, 547.
- 42I. Sani Mamman, Y. Y. Teo, M. Misran, Polym. Bull. 2021, 78, 3399.
- 43S. G. Marapureddy, P. Hivare, A. Sharma, J. Chakraborty, S. Ghosh, S. Gupta, P. Thareja, Carbohydr. Polym. 2021, 269, 118254.
- 44A. S. Deshmukh, C. M. Setty, A. M. Badiger, K. S. Muralikrishna, Carbohydr. Polym. 2012, 87, 980.
- 45B. Kaith, R. Jindal, Der Chem. Sin. 2010, 1, 92.
- 46H. Mittal, A. Maity, S. Sinha Ray, J. Phys. Chem. A 2026, 2015, 119.
- 47P. Rani, G. Sen, S. Mishra, U. Jha, Carbohydr. Polym. 2012, 89, 275.
- 48T. Zhang, X. Sun, Int. J. Nanomat. Nanotechnol. Nanomed. 2020, 6, 1.
- 49E. Makhado, M. J. Hato, Nanosci. 2021, 9, 1.
- 50V. Puri, A. Sharma, P. Kumar, I. Singh, K. Huanbutta, ACS Omega 2021, 6, 15844.
- 51K. Sharma, K. Virk, V. Kumar, S. K. Sharma, V. Sharma, Mater. Today Proc. 1856, 2020, 21.
- 52K. Sharma, V. Kumar, B. Chaudhary, B. S. Kaith, S. Kalia, H. C. Swart, Polym. Degrad. Stab. 2016, 124, 101.
- 53P. Pal, S. K. Singh, S. Mishra, J. P. Pandey, G. Sen, Carbohydr. Polym. 2019, 222, 114979.
- 54R. R. Bhosale, R. A. M. Osmani, A. S. Abu Lila, E. S. Khafagy, H. H. Arab, D. V. Gowda, M. Rahamathulla, U. Hani, M. Adnan, H. V. Gangadharappa, RSC Adv. 2021, 11, 14871.
- 55S. Guan, Z. Su, F. Chen, Q. Fu, J. Appl. Polym. Sci. 2021, 138, 1.
- 56B. von Lospichl, S. Hemmati-Sadeghi, P. Dey, T. Dehne, R. Haag, M. Sittinger, J. Ringe, M. Gradzielski, Colloids Surf. B Biointerfaces 2017, 159, 477.
- 57B. J. Morris, D. C. Willcox, T. A. Donlon, B. J. Willcox, Gerontology 2015, 61, 515.
- 58S. S. Rahatekar, K. K. K. Koziol, S. A. Butler, J. A. Elliott, M. S. P. Shaffer, M. R. Mackley, A. H. Windle, J. Rheol. 2006, 50, 599.
- 59S. K. Samantaray, B. K. Satapathy, J. Appl. Polym. Sci. 2021, 138, 1.
- 60W. P. Cox, E. H. Merz, J. Polym. Sci. 1958, 28, 619.
- 61S. Mirarab Razi, A. Motamedzadegan, A. Shahidi, A. Rashidinejad, Food Hydrocolloids 2018, 82, 268.
- 62S. M. Razi, A. Motamedzadegan, S. A. Shahidi, A. Rashidinejad, Food Nutr. J. 2018, 8. https://doi.org/10.29011/2575-7091.100092
10.29011/2575?7091.100092 Google Scholar
- 63S. M. Razi, A. Motamedzadegan, S. A. Shahidi, A. Rashidinejad, Rheol. Acta 2020, 59, 317.
- 64A. Eroglu, K. Bayrambas, Z. Eroglu, O. S. Toker, M. T. Yilmaz, S. Karaman, M. Dogan, Food Sci. Technol. Int. 2016, 22, 31.
- 65S. Naji-Tabasi, S. M. A. Razavi, Food Hydrocolloids 2017, 67, 243.
- 66S. M. A. Razavi, S. Naji-Tabasi, Rheology and Texture of Basil Seed Gum: A New Hydrocolloid Source, Elsevier Ltd, Amsterdam, Netherlands 2017.
- 67S. Hosseini-Parvar Department of Food Science and Technology. Ferdowsi University of Mashhad, Iran 2009.
- 68Y. P. Timilsena, R. Adhikari, S. Kasapis, B. Adhikari, Int. J. Biol. Macromol. 2015, 81, 991.
- 69Y. Guan, L. Wang, L. Cui, X. Shen, W. Gao, J. Meng, D. Li, C. Shen, Y. Zhang, G. Hu, J. Liang, J. Appl. Polym. Sci. 2020, 137, 1.
- 70D. Wu, L. Wu, M. Zhang, 2007, 45, 2239.
- 71G. K. Tummala, I. Bachi, A. Mihranyan, J. Appl. Polym. Sci. 2019, 136, 1.
- 72A. A. Adewunmi, S. Ismail, A. S. Sultan, J. Appl. Polym. Sci. 2015, 132, 1.
- 73M. Andrei, C. Drăghici, M. Teodorescu, UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2019, 81, 72.
- 74H. Ma, L. Tong, Z. Xu, Z. Fang, Nanotechnology 2007, 18, 375602.
- 75 D. -I. Lazăr, I. Avrămiu, C. Ibănescu, M. D. Buletinul, Institutului Politehnic Din Iaşi 2018, 64.
- 76Y. Yue, X. Wang, Q. Wu, J. Han, J. Jiang, Polymer 2019, 11, 1.
- 77S. Ikeda, K. Nishinari, J. Agric. Food Chem. 2001, 49, 4436.
- 78S. Bashir, Y. Y. Teo, S. Ramesh, K. Ramesh, Polymer 2018, 147, 108.
- 79V. Donchak, Y. Stetsyshyn, M. Bratychak, G. Broza, K. Harhay, N. Stepina, M. Kostenko, S. Voronov, Appl. Surf. Sci. Adv. 2021, 5, 100104.
10.1016/j.apsadv.2021.100104 Google Scholar
- 80P. Jindal, S. Pande, P. Sharma, V. Mangla, A. Chaudhury, D. Patel, B. P. Singh, R. B. Mathur, M. Goyal, Compos. Part B 2013, 45, 417.
- 81L. Wu, L. Li, L. Pan, H. Wang, Y. Bin, J. Appl. Polym. Sci. 2021, 138, 1.