Degradation kinetics and thermomechanical properties of in-situ polymerized layered double hydroxides-ethylene-propylene copolymer
Hassam Mazhar
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Search for more papers by this authorFarrukh Shehzad
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Search for more papers by this authorSung-Gil Hong
TS&D Center, S-Oil Corporation, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Mamdouh A. Al-harthi
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Center for Refining and Advanced Chemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Correspondence
Mamdouh A. Al-harthi, Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorHassam Mazhar
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Search for more papers by this authorFarrukh Shehzad
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Search for more papers by this authorSung-Gil Hong
TS&D Center, S-Oil Corporation, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Mamdouh A. Al-harthi
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Center for Refining and Advanced Chemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Correspondence
Mamdouh A. Al-harthi, Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorFunding information: KFUPM; S-Oil corporation, Republic of Korea
Abstract
This paper reports the study of in-situ incorporation of NiFe-(Anion) layered double hydroxides (LDH) in the ethylene-propylene (EP) (95:05 molar ratio) copolymerization. NiFe LDHs were synthesized with different intercalated anions using the coprecipitation method. The EP/LDH nanocomposites showed improved thermal stability, nevertheless, the various types of intercalated anions in the LDH showed a remarkable effect on the thermal stability and the degradation mechanism of the resultant polymer nanocomposites. EP/LDH constituted with NiFe-CO3/A (A = acetone washed) showed maximum improvement in the thermal stability concerning neat EP. The LDH incorporation in the composite influenced the polymer microstructure which was evident from the DSC and CRYSTAF analysis. The degradation kinetics of neat EP and EP/LDH nanocomposites were studied by employing the isoconversional method. The degradation kinetics models of different polymer samples were predicted by applying a generalized master plot. Moreover, EP nanocomposites exhibited higher storage modulus and elasticity as compared to neat EP copolymer.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
No. Research data are not shared.
Supporting Information
Filename | Description |
---|---|
app52002-sup-0001-supinfo.docxWord 2007 document , 636.3 KB | Figure S1. Fractional conversion (α) with respect to temperature is plotted (a) EP/NiFe-NO3 (b) EP/NiFe-CO3-A (c) EP/NiFe-DDS (d) EP/NiFe-CO3. Figure S2. Generalized master plots (a) EP/NiFe-NO3 (b) EP/NiFe-CO3/A (c) EP/NiFe-DDS (d) EP/NiFe-CO3. Figure S3. Combined kinetic analysis is plotted for (a) EP/NiFe-NO3 (α < 0.5), (b) EP/NiFe-NO3 (α > 0.5), (c) EP/NiFe-CO3/A, (d) EP/NiFe-DDS (α < 0.5), (e) EP/NiFe-DDS (α > 0.5), (f) EP/NiFe-CO3. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. Zubair, F. Shehzad, M. A. Al-Harthi, Thermochim. Acta 2016, 633, 48.
- 2C. M. Preston, G. Amarasinghe, J. L. Hopewell, R. A. Shanks, Z. Mathys, Polym. Degrad. Stab. 2004, 84, 533.
- 3M. Gao, Q. Jiao, W. Cui, C. Feng, Y. Zhao, A. Xiang, X. Mu, L. Ma, Polym. Eng. Sci. 2019, 59.s2, E366.
- 4N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi, U. D. Weglikovska, M. Kaempgen, S. Roth, Phys. Status Solidi 2006, 203, 1082.
- 5R. Heidar, M. Soheilmoghaddam, A. Hassan, Polym. Degrad. Stab. 2015, 120, 88.
- 6W.-F. Ji, K.-C. Chang, M.-C. Lai, C. W. Li, S. C. Hsu, T. L. Chuang, J. M. Yeh, W. R. Liu, Compos. Part A Appl. Sci. Manuf. 2014, 65, 108.
- 7M. Z. Kassaee, E. Motamedi, M. Majdi, Chem. Eng. J. 2011, 172, 540.
- 8F. Kovanda, E. Jindová, K. Lang, P. Kubát, Z. Sedláková, Appl. Clay Sci. 2010, 48, 260.
- 9M. Daud, F. Shehzad, M. A. Al-Harthi, Arab. J. Sci. Eng. 2018, 43, 6021.
- 10F. Shehzad, M. A. Al-Harthi, Appl. Clay Sci. 2021, 202, 105947.
- 11W. Kaminsky, A. Laban, Appl. Catal. A. Gen. 2001, 222, 47.
- 12D. Banerjee, A. Jha, K. K. Chattopadhyay, Macromol. Res. 2012, 20, 1021.
- 13L. Feng, W. Li, J. Ren, X. Qu, Nano Res. 2015, 8, 887.
- 14A. C. Dos Ouros, M. O. De Souza, H. O. Pastore, J. Braz. Chem. Soc. 2014, 25, 2164.
- 15C. Nyambo, E. Kandare, D. Wang, C. A. Wilkie, Polym. Degrad. Stab. 2008, 93, 1656.
- 16X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, H. A. Colorado, X. Zhang, S. Wei, Z. Guo, J. Mater. Chem. C 2015, 3, 162.
- 17S. Elbasuney, Powder Technol. 2015, 277, 63.
- 18G. Mishra, B. Dash, S. Pandey, Appl. Clay Sci. 2018, 153, 172.
- 19Q. Wang, D. Ohare, Chem. Rev. 2012, 112, 4124.
- 20R. Ma, Z. Liu, K. Takada, N. Iyi, Y. Bando, T. Sasaki, J. Am. Chem. Soc. 2007, 129, 5257.
- 21J. C. Buffet, N. Wanna, T. A. Q. Arnold, E. K. Gibson, P. P. Wells, Q. Wang, J. Tantirungrotechai, D. O'Hare, Chem. Mater. 2015, 27, 1495.
- 22Y. Gao, Q. Wang, J. Wang, L. Huang, X. Yan, X. Zhang, Q. He, Z. Xing, Z. Guo, ACS Appl. Mater. Interfaces 2014, 6, 5094.
- 23E. N. Kalali, A. Montes, X. Wang, L. Zhang, M. E. Shabestari, Z. Li, D. Y. Wang, Fire Mater. 2018, 42, 213.
- 24Z. Dobkowski, Polym. Degrad. Stab. 2006, 91, 488.
- 25P. Paik, K. K. Kar, Polym. Degrad. Stab. 2008, 93, 24.
- 26S. Vyazovkin, I. Dranca, X. Fan, R. Advincula, J. Phys. Chem. B 2004, 108, 11672.
- 27A. Khawam, D. R. Flanagan, J. Phys. Chem. B 2006, 110, 17315.
- 28N. Koga, H. Tanaka, Thermochim. Acta 2002, 388, 41.
- 29P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. M. Criado, J. Phys. Chem. A 2010, 114, 7868.
- 30V. Mamleev, S. Bourbigot, M. Le Bras, J. Yvon, J. Lefebvre, Chem. Eng. Sci. 2006, 61, 1276.
- 31Z. Gao, T. Kaneko, D. Hou, M. Nakada, Polym. Degrad. Stab. 2004, 84, 399.
- 32P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. M. Criado, Polym. Degrad. Stab. 2009, 94, 2079.
- 33J.-C. Buffet, T. A. Q. Arnold, Z. R. Turner, P. Angpanitcharoen, D. O'Hare, RSC Adv. 2015, 5, 87456.
- 34M. Yang, O. McDermott, J. C. Buffet, D. O'Hare, RSC Adv. 2014, 4, 51676.
- 35Q. Zhao, Z. Chang, X. Lei, X. Sun, Ind. Eng. Chem. Res. 2011, 50, 10253.
- 36C. Li, Q. Dou, Z. Bai, Q. Lu, J. Therm. Anal. Calorim. 2015, 122, 407.
- 37P. Bartocci, R. Tschentscher, R. E. Stensrød, M. Barbanera, F. Fantozzi, Molecules 2019, 24, 1657.
- 38S. Vyazovkin, J. Therm. Anal. Calorim. 2006, 83, 45.
- 39F. Shehzad, S. P. Thomas, M. A. Al-Harthi, Thermochim. Acta 2014, 589, 226.
- 40S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J. J. Suñol, Thermochim. Acta 2014, 590, 1.
- 41H. L. Friedman, J. Polym. Sci. Part C Polym. Symp. 2007, 6, 183.
10.1002/polc.5070060121 Google Scholar
- 42P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. M. Criado, Thermochim. Acta 2013, 552, 54.
- 43M. J. Starink, Thermochim. Acta 2003, 404, 163.
- 44A. Aziz, M. Asif, M. Azeem, G. Ashraf, Z. Wang, F. Xiao, H. Liu, Anal. Chim. Acta 2019, 1047, 197.
- 45J. A. Carrasco, R. Sanchis-Gual, A. S.-D. Silva, G. Abellán, E. Coronado, Chem. Mater. 2019, 31, 6798.
- 46L. Wang, S. Su, D. Chen, C. A. Wilkie, Polym. Degrad. Stab. 2009, 94, 770.
- 47S. Cheng, X. Chen, Y. G. Hsuan, C. Y. Li, Macromolecules 2012, 45, 993.
- 48Y. Gao, Y. Zhang, G. R. Williams, D. O'Hare, Q. Wang, Sci. Rep. 2016, 6, 35502.
- 49Y. Liu, Y. Gao, Q. Wang, W. Lin, Dalton Trans. 2018, 47, 14827.
- 50C. Chen, M. Yang, Q. Wang, J. C. Buffet, D. O'Hare, J. Mater. Chem. A 2014, 2, 15102.
- 51Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 2006, 128, 4872.
- 52T. J. Williams, J. C. Buffet, Z. R. Turner, D. O'Hare, Cat. Sci. Technol. 2018, 8, 5454.
- 53W. Cui, Q. Jiao, Y. Zhao, H. Li, H. Liu, M. Zhou, Express Polym. Lett. 2012, 6, 485.
- 54J. D. Peterson, S. Vyazovkin, C. A. Wight, Macromol. Chem. Phys. 2001, 202, 775.
- 55P. Das, P. Tiwari, Thermochim. Acta 2017, 654, 191.
- 56M. A. Bashir, Solids 2021, 2, 108.