Data-driven methodology to realize strong and broadband microwave absorption properties of polymer-fly ash cenosphere composite
Corresponding Author
Pritom J. Bora
Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore, India
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Correspondence
Pritom J. Bora and Praveen C. Ramamurthy, Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore 560012, India.
Email: [email protected] (P. J. B.) and [email protected] (P. C. R.)
Search for more papers by this authorBibhusita Mahanta
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Search for more papers by this authorKishore
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Search for more papers by this authorCorresponding Author
Praveen C. Ramamurthy
Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore, India
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Correspondence
Pritom J. Bora and Praveen C. Ramamurthy, Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore 560012, India.
Email: [email protected] (P. J. B.) and [email protected] (P. C. R.)
Search for more papers by this authorCorresponding Author
Pritom J. Bora
Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore, India
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Correspondence
Pritom J. Bora and Praveen C. Ramamurthy, Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore 560012, India.
Email: [email protected] (P. J. B.) and [email protected] (P. C. R.)
Search for more papers by this authorBibhusita Mahanta
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Search for more papers by this authorKishore
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Search for more papers by this authorCorresponding Author
Praveen C. Ramamurthy
Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore, India
Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India
Correspondence
Pritom J. Bora and Praveen C. Ramamurthy, Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc), Bangalore 560012, India.
Email: [email protected] (P. J. B.) and [email protected] (P. C. R.)
Search for more papers by this authorFunding information: Aeronautics Research and Development Board, Grant/Award Number: ARDB/01/2031900/M/I
Abstract
A very efficient microwave absorption characteristic of conducting polymer (polyaniline or PANI) incorporated fly ash cenosphere (FAC), which is a waste of thermal power plant, is revealed in this work with materials data-driven approach. The different loading (wt%) of PANI-FAC hybrids to a polymer such as polyvinyl butyral (PVB) results in different reflection loss (RL). However, RL performances do not improve by simply increasing the PANI-FAC hybrid loading (wt%) to PVB. Herein, PANI-FAC loading to PVB is optimized through the electromagnetic data-driven methodology. A remarkable RL ≤ − 40 dB with entire X-band (8.2–12.4 GHz) absorption bandwidth (RL ≤ −10 dB, RL value −10 dB corresponds to 90% absorption) is predicted for 8.5 wt% PANI-FAC hybrid loaded PVB-PANI-FAC composite. The predicted RL matched with experimental data (minimum RL value −44.5 dB with X-band absorption bandwidth), confirming the proposed proof of concept of data-driven methodology to obtain broadband and robust microwave absorption characteristics of polymer-FAC composites.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
app51981-sup-0001-AppendixS1.docxWord 2007 document , 3.2 MB | Appendix S1: Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137. https://doi.org/10.1126/science.aag2421
- 2P. He, X. X. Wang, Y. Z. Cai, J. C. Shu, Q. L. Zhao, J. Yuan, M. S. Cao, Nanoscale 2019, 11, 6080. https://doi.org/10.1039/c8nr10489a
- 3B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 2014, 26, 3484. https://doi.org/10.1002/adma.201400108
- 4M. Havas, Rev. Environ. Health. 2013, 75. https://doi.org/10.1515/reveh-2013-0004
- 5B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, ACS Appl. Mater. Interfaces 2013, 5(21), 11383. https://doi.org/10.1021/am4036527
- 6L. C. Jia, D. X. Yan, X. Liu, R. Ma, H. Y. Wu, Z. M. Li, ACS Appl. Mater. Interfaces 2018, 10, 11941. https://doi.org/10.1021/acsami.8b00492
- 7A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C. M. Koo, Science 2020, 369, 446. https://doi.org/10.1126/science.aba7977
- 8B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 28917. https://doi.org/10.1021/acsami.6b10886
- 9P. J. Bora, K. J. Vinoy, P. C. Ramamurthy, Kishore, G. Madras, Electron. Mater. Lett. 2016, 12, 603. https://doi.org/10.1007/s13391-016-5447-0
- 10P. Liu, L. Li, L. Wang, T. Huang, Q. L. Zhao, K. L. Zhang, X. M. Bian, Z. L. Hou, Phys. Status Solid. Appl. Mater. Sci. 2017, 214, 1700589. https://doi.org/10.1002/pssa.201700589
- 11M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 2018, 14, 1800987. https://doi.org/10.1002/smll.201800987
- 12T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, A. Vilches, IEEE Trans. Antennas Propag. 2014, 62, 1844. https://doi.org/10.1109/TAP.2014.2298044
- 13P. J. Bora, A. G. Anil, P. C. Ramamurthy, Y. H. Lee, Macromol. Rapid Commun. 2021, 42, 2000763. https://doi.org/10.1002/marc.202000763
- 14M. S. Cao, Y. Z. Cai, P. He, J. C. Shu, W. Q. Cao, J. Yuan, Chem. Eng. J. 2019, 359, 1265. https://doi.org/10.1016/j.cej.2018.11.051
- 15M. Green, X. Chen, J. Mater. 2019, 5, 503. https://doi.org/10.1016/j.jmat.2019.07.003
- 16X. J. Zhang, A. P. Guo, G. S. Wang, P. G. Yin, IET Nanodielectrics. 2019, 2, 2. https://doi.org/10.1049/iet-nde.2018.0014
- 17D. Bychanok, S. Li, A. Sanchez-Sanchez, G. Gorokhov, P. Kuzhir, F. Y. Ogrin, A. Pasc, T. Ballweg, K. Mandel, A. Szczurek, V. Fierro, A. Celzard, Appl. Phys. Lett. 2016, 108, 013701. https://doi.org/10.1063/1.4938537
- 18C. Yang, H. Li, D. Xiong, Z. Cao, React. Funct. Polym. 2009, 69, 137. https://doi.org/10.1016/j.reactfunctpolym.2008.12.008
- 19S. Varshney, A. Ohlan, V. K. Jain, V. P. Dutta, S. K. Dhawan, Ind. Eng. Chem. Res. 2014, 53, 14282. https://doi.org/10.1021/ie500512d
- 20N. Ranjbar, C. Kuenzel, Fuel 2017, 207, 1. https://doi.org/10.1016/j.fuel.2017.06.059
- 21A. G. Castellanos, H. Mawson, V. Burke, P. Prabhakar, Constr. Build. Mater. 2017, 156, 307. https://doi.org/10.1016/j.conbuildmat.2017.08.151
- 22Q. Li, J. Pang, B. Wang, D. Tao, X. Xu, L. Sun, J. Zhai, Adv. Powder Technol. 2013, 24, 288. https://doi.org/10.1016/j.apt.2012.07.004
- 23P. J. Bora, M. Porwal, K. J. Vinoy, Kishore, P. C. Ramamurthy, G. Madras, Compos. Part B Eng. 2018, 134, 151. https://doi.org/10.1016/j.compositesb.2017.09.062
- 24B. Zhu, Y. Tian, Y. Wang, L. Mao, F. Gao, G. Wen, L. Liang, K. Zhang, G. Li, ACS Appl. Electron. Mater. 2020, 2, 3307. https://doi.org/10.1021/acsaelm.0c00630
- 25W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, J. Magn. Magn. Mater. 2007, 316, 54. https://doi.org/10.1016/j.jmmm.2007.03.201
- 26A. P. Singh, A. K. Singh, A. Chandra, S. K. Dhawan, AIP Adv. 2011, 1, 022147. https://doi.org/10.1063/1.3608052
- 27P. Saini, V. Choudhary, N. Vijayan, R. K. Kotnala, J. Phys. Chem. C 2012, 116, 13403. https://doi.org/10.1021/jp302131w
- 28P. C. Ramamurthy, A. N. Mallya, A. Joseph, W. R. Harrell, R. V. Gregory, Polym. Eng. Sci. 2012, 52, 1821. https://doi.org/10.1002/pen.23096
- 29P. J. Bora, N. Mallik, P. C. Ramamurthy, Kishore, G. Madras, Compos. Part B Eng. 2016, 106, 224. https://doi.org/10.1016/j.compositesb.2016.09.035
- 30K. Lakshmi, H. John, K. T. Mathew, R. Joseph, K. E. George, Acta Mater. 2009, 57, 371. https://doi.org/10.1016/j.actamat.2008.09.018
- 31M. Green, A. T. Tran, Van; Chen, X., Adv. Mater. Interfaces 2020, 7, 2000658. https://doi.org/10.1002/admi.202000658
- 32M. Green, A. T. Tran, Van; Chen, X., Compos. Sci. Technol. 2020, 199, 108332. https://doi.org/10.1016/j.compscitech.2020.108332
- 33S. Gupta, S. Seethamraju, P. C. Ramamurthy, G. Madras, Ind. Eng. Chem. Res. 2013, 52, 4383. https://doi.org/10.1021/ie3022412
- 34L. F. Chen, L. F. Chen, C. K. Ong, C. K. Ong, C. P. Neo, C. P. Neo, V. V. Varadan, V. V. Varadan, V. K. Varadan, V. K. Varadan, Microwave Electron. Measure. Mater. Character. 2004, 175. https://doi.org/10.1002/0470020466
- 35U. J. Mahanta, J. P. Gogoi, D. Borah, N. S. Bhattacharyya, IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 194. https://doi.org/10.1109/TDEI.2018.007443
- 36M. Green, A. Thi Van Tran, X. Chen, ACS Appl. Electron. Mater. 2020, 2, 2937. https://doi.org/10.1021/acsaelm.0c00573
- 37K. Levenberg, Q. Appl. Math. 1944, 2, 164. https://doi.org/10.1090/qam/10666
10.1090/qam/10666 Google Scholar
- 38M. Green, X. Chen, J. Open Source Softw. 2019, 4, 1868. https://doi.org/10.21105/joss.01868
10.21105/joss.01868 Google Scholar