Toughening, highly thermostable, and flame retardant polylactic acid enabled by polyphosphazene microsphere
Jiaxing Dong
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
Search for more papers by this authorZhiping Mao
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, China
National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian City, China
Search for more papers by this authorCorresponding Author
Zhize Chen
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
Correspondence
Zhize Chen, Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No.2999 North Renmin Road, Shanghai 201620, China.
Email: [email protected]
Search for more papers by this authorJiaxing Dong
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
Search for more papers by this authorZhiping Mao
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, China
National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian City, China
Search for more papers by this authorCorresponding Author
Zhize Chen
Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
Correspondence
Zhize Chen, Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No.2999 North Renmin Road, Shanghai 201620, China.
Email: [email protected]
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 51503029
Abstract
To obtain superior flame retardant poly(lactic acid) (PLA), a highly cross-linked poly (cyclotriphosphazeneco4,4′diaminodiphenyl sulfone) (CP-DDS) microsphere was synthesized by the precipitation polymerization between hexachlorocyclotriphosphazene (HCCP) and 4,4′diaminodiphenyl sulfone (DDS). Thanks to the cooperative effect of flame retardant elements including P, N and S, this as-synthesized CP-DDS microsphere presented excellent fire resistance. The limiting oxygen index (LOI) value of the PLA containing 7 wt% CP-DDS microsphere (PLA/FR7.0) was dramatically increased to 26.8% from 19.7%. Moreover, the dripping of PLA/FR7.0 sharply decrease and it passed V-1 UL-94 rating in the vertical combustion test. Cone calorimetry results presented that PLA/FR7.0 composites resulted in 20.85% and 23.02% reductions in the total heat release (THR) and the peak heat release rate (PHRR) respectively. Besides, the average effective heat combustion (av-EHC) of PLA/FR7.0 composites is 14.24% lower than that of PLA. Surprisingly, the elongation at break of PLA/FR7.0 composites was enhanced by 40%, hardly without loss of the mechanical strength. Possible flame retardant mechanism from gas phase and condensed phase was proposed. The fire-retardant materials prepared by this toughening microsphere are sufficient to cope with the challenges brought by complex environments, which are expected to be applied in more fields.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
app51973-sup-0001-Supinfo.docxWord 2007 document , 1.2 MB | Appendix S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. S. Ali, T. Elsamahy, R. Al-Tohamy, D. Zhu, Y. A. G. Mahmoud, E. Koutra, M. A. Metwally, M. Kornaros, J. Sun, Sci. Total Environ. 2021, 780, 590.
- 2S. Fu, P. Song, X. Liu, M. Fan, F. Fu, Advanced High Strength Natural Fibre Composites in Construction, Elsevier, The Amsterdam 2017.
- 3J.-M. Raquez, Y. Habibi, M. Murariu, Polym. Sci. 2013, 38, 1504.
- 4K. Malkappa, J. Bandyopadhyay, S. S. Ray, Molecules 2018, 23, 2648.
- 5W. Cai, J. Wang, Y. Pan, W. Guo, X. Mu, X. Feng, B. Yuan, X. Wang, Y. Hu, J. Hazard. Mater. 2018, 352, 57.
- 6W. Yang, B. Tawiah, C. Yu, Y.-F. Qian, L.-L. Wang, A. C.-Y. Yuen, S.-E. Zhu, E.-Z. Hu, T. B.-Y. Chen, B. Yu, H.-D. Lu, G. H. Yeoh, X. Wang, L. Song, Y. Hu, Composites, Part A 2018, 110, 227.
- 7M. Zhu, L. Liu, Z. Wang, J. Hazard. Mater. 2020, 392, 343.
- 8Y. Shi, W. Xing, B. Wang, N. Hong, Y. Zhu, C. Wang, Z. Gui, R. K. K. Yuen, Y. Hu, Mater. Chem. Phys. 2016, 177, 283.
- 9K. Zhou, R. Gao, X. Qian, J. Hazard. Mater. 2017, 338, 343.
- 10T. Li, S. Li, T. Ma, Y. Zhong, L. Zhang, H. Xu, B. Wang, X. Feng, X. Sui, Z. Chen, Z. Mao, Eur. Polym. J. 2019, 120, 9270.
- 11X. Cao, X. Chi, X. Deng, Q. Sun, X. Gong, B. Yu, A. C. Y. Yuen, W. Wu, R. K. Y. Li, Polymers. 2020, 12, 1106.
- 12H. Huang, D. Dong, W. Li, X. Zhang, L. Zhang, Y. Chen, X. Sheng, X. Lu, J. Chin, Chem. Eng. 2020, 28, 1981.
- 13S. Gaan, G. Sun, K. Hutches, M. H. Engelhard, Polym. Degrad. Stab. 2008, 93, 99.
- 14Z. Chi, Z. Guo, Z. Xu, M. Zhang, M. Li, L. Shang, Y. Ao, Polym. Degrad. Stab. 2020, 176, 151.
- 15X. Zhou, S. Qiu, X. Mu, M. Zhou, W. Cai, L. Song, W. Xing, Y. Hu, Composites, Part B 2020, 202, 397.
- 16S. Yang, Q. Zhang, Y. Hu, Polym. Degrad. Stab. 2016, 133, 358.
- 17Y. Fang, J. Miao, X. Yang, Y. Zhu, G. Wang, Chem. Eng. J. 2020, 385, 3830.
- 18K. Tao, J. Li, L. Xu, X. Zhao, L. Xue, X. Fan, Q. Yan, Polym. Degrad. Stab. 2011, 96, 1248.
- 19G. Yang, W.-H. Wu, Y.-H. Wang, Y.-H. Jiao, L.-Y. Lu, H.-Q. Qu, X.-Y. Qin, J. Hazard. Mater. 2019, 366, 78.
- 20M. Wang, J. Fu, D. Huang, C. Zhang, Q. Xu, Nanoscale 2013, 5, 7913.
- 21L. Zhu, Y. Xu, W. Yuan, J. Xi, X. Huang, X. Tang, S. Zheng, Adv. Mater. 2006, 18, 2997.
- 22L. Zhu, Y. Zhu, Y. Pan, Y. Huang, X. Huang, X. Tang, Macromol. React. Eng. 2007, 1, 45.
- 23M. Deng, S. G. Kumbar, L. S. Nair, A. L. Weikel, H. R. Allcock, C. T. Laurencin, Adv. Funct. Mater. 2011, 21, 2641.
- 24S. Wang, J. Fu, K. Wang, M. Gao, X. Wang, Z. Wang, Q. Xu, J. Colloid Interface Sci. 2018, 525, 152.
- 25S. Qiu, X. Wang, B. Yu, X. Feng, X. Mu, R. K. K. Yuen, J. Hazard. Mater. 2017, 325, 327.
- 26X. Zhou, S. Qiu, W. Xing, C. S. R. Gangireddy, Z. Gui, Y. Hu, ACS Appl. Mater. Interfaces 2017, 9, 147.
- 27D. Yang, L. Dong, X. Hou, W. Zheng, J. Xiao, J. Xu, H. Ma, Polym. Adv. Technol. 2020, 31, 135.
- 28N. Wu, G. Fu, Y. Yang, M. Xia, H. Yun, Q. Wang, J. Hazard. Mater. 2019, 363, 1.
- 29X. Shi, X. Peng, J. Zhu, G. Lin, T. Kuang, J. Colloid Interface Sci. 2018, 524, 267.
- 30B. Tawiah, B. Yu, W. Y. Cheung, S. Y. Chan, W. Yang, B. Fei, Polym. Degrad. Stab. 2018, 152, 64.
- 31S. Zhang, Y. Yan, W. Wang, X. Gu, H. Li, J. Li, J. Sun, Polym. Degrad. Stab. 2018, 147, 142.
- 32Y. Chen, L. Xu, X. Wu, B. Xu, Thermochim. Acta 2019, 679, 336.
- 33W. Yang, H. Zhang, X. Hu, Y. Liu, S. Zhang, C. Xie, Polym. Degrad. Stab. 2021, 191, 664.
- 34P. Zhang, X. Huang, J. Fu, Y. Huang, Y. Zhu, X. Tang, Macromol. Chem. Phys. 2009, 210, 792.
- 35J. Cheng, J. Wang, S. Yang, Q. Zhang, Y. Hu, G. Ding, S. Huo, React. Funct. Polym. 2020, 146, 412.
- 36H. Yu, Y. Xia, X. Xu, N. Zarshad, M. Wu, H. Ni, J. Appl. Polym. Sci. 2020, 137, 256.
- 37S. Huo, J. Wang, S. Yang, X. Chen, B. Zhang, Q. Wu, B. Zhang, Polym. Adv. Technol. 2018, 29, 497.
- 38J. Cheng, H. Duan, S. Yang, J. Wang, Q. Zhang, G. Ding, Y. Hu, S. Huo, J. Appl. Polym. Sci. 2020, 137, 9090.
- 39W. Yang, W.-J. Yang, B. Tawiah, Y. Zhang, L.-L. Wang, S.-E. Zhu, T. B. Y. Chen, A. C. Y. Yuen, B. Yu, Y.-F. Liu, J.-Y. Si, E.-Z. Hu, H.-D. Lu, K.-H. Hu, Q. N. Chan, G. H. Yeoh, Compos. Sci. Technol. 2018, 164, 44.
- 40J. Wang, X. Su, Z. Mao, Polym. Degrad. Stab. 2014, 109, 154.
- 41T. Sai, S. Ran, Z. Guo, H. Yan, Y. Zhang, H. Wang, P. Song, Z. Fang, Chem. Eng. J. 2021, 409, 8223.
- 42Q. Li, P. Jiang, Z. Su, P. Wei, G. Wang, X. Tang, J. Appl. Polym. Sci. 2005, 96, 854.
- 43D. Mathew, C. P. R. Nair, Polym. Int. 2000, 49, 48.
- 44D. A. Purser, J. L. McAllister, SFPE Handbook of Fire Protection Engineering. Springer, New York 2016, p. 2308.
10.1007/978-1-4939-2565-0_63 Google Scholar
- 45N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G. H. Liaghat, S. Vahid, Nanoscale 2015, 7, 294.
- 46L. Liu, Y. Xu, Y. Di, M. Xu, Y. Pan, B. Li, Composites, Part B 2020, 202, 8407.
- 47J. P. Patel, Z. G. Xiang, S. L. Hsu, A. B. Schoch, S. A. Carleen, D. Matsumoto, J. Polym. Sci. Part B: Polym. Phys. 2015, 53, 1519.
- 48A. J. Hsieh, V. K. Champagne, S. E. Kooi, Polymer 2020, 209, 939.
- 49J. P. Patel, Z. G. Xiang, S. L. Hsu, A. B. Schoch, S. A. Carleen, D. Matsumoto, Int. J. Adhes. Adhes. 2017, 78, 256.
- 50S. Yang, J. Wang, S. Huo, L. Cheng, M. Wang, Polym. Degrad. Stab. 2015, 115, 63.
- 51Y.-W. Jia, X. Zhao, T. Fu, D.-F. Li, Y. Guo, X.-L. Wang, Y.-Z. Wang, Composites, Part B 2020, 197, 8192.
- 52J. Wang, L. Qian, B. Xu, W. Xi, X. Liu, Polym. Degrad. Stab. 2015, 122, 8.
- 53W. Xi, L. Qian, Y. Qiu, Y. Chen, Polym. Adv. Technol. 2016, 27, 781.
- 54K. Dai, L. Song, R. K. K. Yuen, S. Jiang, H. Pan, Y. Hu, Ind. Eng. Chem. Res. 2012, 51, 918.
- 55R. Jian, P. Wang, L. Xia, X. Zheng, J. Anal. Appl. Pyrol. 2017, 127, 360.
- 56S. Qiu, C. Ma, Wang, X. Zhou, X. Feng, R. K. K. Yuen, Y. Hu, J. Hazard. Mater. 2018, 344, 839.
- 57Y.-X. Wei, C. Deng, H. Chen, L. Wan, W.-C. Wei, Y.-Z. Wang, ACS Appl. Mater. Interfaces 2018, 10, 28036.
- 58T. Fu, D.-M. Guo, J.-N. Wu, X.-L. Wang, X.-L. Wang, L. Chen, Y.-Z. Wang, Polym. Chem. 2016, 7, 1584.
- 59X. Zhao, P. Wei, Y. Qian, H. Yu, J. Liu, J. Appl. Polym. Sci. 2012, 125, 3167.
- 60W. Zhao, J. Liu, H. Peng, J. Liao, X. Wang, Polym. Degrad. Stab. 2015, 118, 120.
- 61K.-C. Tsai, C.-F. Kuan, C.-H. Chen, H.-C. Kuan, S.-W. Hsu, F.-M. Lee, C.-L. Chiang, J. Appl. Polym. Sci. 2013, 127, 1084.
- 62F. Fang, S. Ran, Z. Fang, P. Song, H. Wang, Composites, Part B 2019, 165, 406.
- 63P. Wang, L. Xia, R. Jian, Y. Ai, X. Zheng, G. Chen, J. Wang, Polym. Degrad. Stab. 2018, 149, 69.
- 64A. J. Crisci, M. H. Tucker, M.-Y. Lee, S. G. Jang, J. A. Dumesic, S. L. Scott, ACS Catal. 2011, 1, 719.
- 65R. P. W. J. Struis, T. J. Schildhauer, I. Czekaj, M. Janousch, S. M. A. Biollaz, Appl. Catal. A 2009, 362, 121.
- 66P. Zhang, L. Song, H. Lu, Y. Hu, W. Xing, J. Ni, J. Wang, Polym. Degrad. Stab. 2009, 94, 201.