High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment
Corresponding Author
Zongxue Yu
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Correspondence to: Z. Yu (E-mail: [email protected])Search for more papers by this authorHaojie Zeng
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorXia Min
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorXianfeng Zhu
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorCorresponding Author
Zongxue Yu
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Correspondence to: Z. Yu (E-mail: [email protected])Search for more papers by this authorHaojie Zeng
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorXia Min
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorXianfeng Zhu
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500 People's Republic of China
Search for more papers by this authorABSTRACT
In this study, a novel dopamine-modified TiO2 nanowire (NW)-intercalated graphene-oxide-based photocatalytic (NWC) membrane was prepared by vacuum-assisted filtration using a commercial cellulose acetate membrane as a support layer. At the same time, compared with the synthesized reduced graphene-oxide/polydopamine/TiO2 nanoparticle composite (NPC) membrane, it was found that the NWC membrane has high water flux (273 L m−2 h−1) and removal rate (above 98%) on the dye-oil emulsion. After 5 cycles of experiments, the NWC membrane maintained a relatively stable permeation flux and removal rate, which was significantly better than the NPC membrane. The results showed that the NWC membrane had a more uniform distribution of TiO2 NW, and had better antifouling ability, recyclability, and photocatalytic performance than NPC membrane. In summary, the NWC photocatalytic membrane of this study shows excellent water purification potential and provides a new path for photocatalytic water treatment. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48488.
REFERENCES
- 1Demirbas, A. J. Hazard. Mater. 2009, 167(1–3), 1. https://doi.org/10.1016/j.jhazmat.2008.12.114.
- 2Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A. J. Mater. Chem. A. 2017, 5(31), 16025. https://doi.org/10.1039/c7ta02070h.
- 3Cardoso, J. C.; Bessegato, G. G.; Boldrin Zanoni, M. V. Water Res. 2016, 98, 39. https://doi.org/10.1016/j.watres.2016.04.004.
- 4Drioli, E.; Romano, M. Ind. Eng. Chem. Res. 2001, 40(5), 1277.
- 5Werber, J. R.; Osuji, C. O.; Elimelech, M. Nat. Rev. Mater. 2016, 1(5). https://doi.org/10.1038/natrevmats.2016.18.
- 6Cao, Z. P.; Li, S. S.; Zhang, J. L.; Zhang, H. W. J. Chem. Technol. Biotechnol. 2017, 92(3), 693. https://doi.org/10.1002/jctb.5056.
- 7Chen, Q.; Yu, Z. X.; Pan, Y.; Zeng, G. Y.; Shi, H.; Yang, X.; et al. J. Mater. Sci. Mater. Electron. 2017, 28(4), 3865. https://doi.org/10.1007/s10854-016-5999-7.
- 8Ye, C. C.; Zhao, F. Y.; Wu, J. K.; Weng, X. D.; Zheng, P. Y.; Mi, Y. F.; An, Q. F.; Gao, C. J. Chem. Eng. J. 2017, 307, 526. https://doi.org/10.1016/j.cej.2016.08.122.
- 9Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Chem. Eng. J. 2016, 306, 1116. https://doi.org/10.1016/j.cej.2016.08.053.
- 10Zhang, X.; Wang, D. K.; Costa, J. C. D. D. Catal. Today. 2014, 230(6), 47.
- 11Lu, W.-C.; Tseng, L.-C.; Chang, K.-S. ACS Comb. Sci. 2017, 19(9), 585. https://doi.org/10.1021/acscombsci.7b00077.
- 12Ma, L. L.; Cui, Z. D.; Li, Z. Y.; Zhu, S. L.; Liang, Y. Q.; Yin, Q. W.; Yang, X. J. Mater. Sci. Eng. B. 2013, 178(1), 77.
- 13Wijeratne, A. B.; Wijesundera, D. N.; Paulose, M.; Ahiabu, I. B.; Chu, W. K.; Varghese, O. K.; Greis, K. D. ACS Appl. Mater. Interfaces. 2015, 7(21), 11155. https://doi.org/10.1021/acsami.5b00799.
- 14Zhai, C. Y.; Zhu, M. S.; Bin, D.; Wang, H. W.; Du, Y. K.; Wang, C. Y.; Yang, P. ACS Appl. Mater. Interfaces. 2014, 6(20), 17753. https://doi.org/10.1021/am504263e.
- 15Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Adv. Funct. Mater. 2010, 16(8), 1067.
- 16Peng, Y.; Yu, Z.; Li, F.; Chen, Q.; Yin, D.; Min, X. Sep. Purif. Technol. 2018, 200, 130. https://doi.org/10.1016/j.seppur.2018.01.059.
- 17Jo, W. K.; Kumar, S.; Isaacs, M. A.; Lee, A. F.; Karthikeyan, S. Appl. Catal. Environ. 2016, 201, 159.
- 18Zhu, P. N.; Nair, A. S.; Peng, S. J.; Yang, S. Y.; Ramakrishna, S. ACS Appl. Mater. Interfaces. 2012, 4(2), 581. https://doi.org/10.1021/am201448p.
- 19Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C. L.; Wang, S.; Fan, Z. Y. ACS Appl. Mater. Interfaces. 2012, 4(8), 3944. https://doi.org/10.1021/am300772t.
- 20Wang, C. C.; Yu, C. Y.; Kei, C. C.; Perng, T. P. J. J. J. Nanosci. Nanotechnol. 2011, 11(1), 200.
- 21Wang, W.; Wu, Z.; Eftekhari, E.; Huo, Z.; Li, X.; Tade, M. O.; et al. Catal. Sci. Technol. 2018, 6(8). http://doi.org/10.1039/C8CY00082D.
- 22Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small. 2016, 12(48), 6640. https://doi.org/10.1002/smll.201600382.
- 23Akbarzadeh, R.; Khalili, S. S.; Dehghani, H. New J. Chem. 2016, 40(4), 3528. https://doi.org/10.1039/c5nj02965a.
- 24Gyorgy, E.; Logofatu, C.; del Pino, A. P.; Datcu, A.; Pascu, O.; Ivan, R. Ceram. Int. 2018, 44(2), 1826. https://doi.org/10.1016/j.ceramint.2017.10.117.
- 25Jiang, Y.; Wang, W. N.; Liu, D.; Nie, Y.; Li, W. L.; Wu, J. W.; et al. Environ. Sci. Technol. 2015, 49(11), 6846. https://doi.org/10.1021/acs.est.5b00904.
- 26Sun, P. Z.; Wang, K. L.; Zhu, H. W. Adv. Mater. 2016, 28(12), 2287. https://doi.org/10.1002/adma.201502595.
- 27Wang, J.; Zhang, P.; Liang, B.; Liu, Y.; Xu, T.; Wang, L.; Cao, B.; Pan, K. ACS Appl. Mater. Interfaces. 2016, 8(9), 6211. https://doi.org/10.1021/acsami.5b12723.
- 28Wei, Y.; Zhang, Y.; Gao, X.; Yuan, Y.; Su, B.; Gao, C. Carbon. 2016, 108, 568. https://doi.org/10.1016/j.carbon.2016.07.056.
- 29Han, Y.; Jiang, Y.; Gao, C. ACS Appl. Mater. Interfaces. 2015, 7(15), 8147. https://doi.org/10.1021/acsami.5b00986.
- 30Ying, Y.; Liu, D.; Zhang, W.; Ma, J.; Huang, H.; Yang, Q.; Zhong, C. ACS Appl. Mater. Interfaces. 2017, 9(2), 1710. https://doi.org/10.1021/acsami.6b14371.
- 31Yu, Z.; Min, X.; Li, F.; Yin, D.; Peng, Y.; Zeng, G. Polym. Adv. Technol. 2019, 30, 101. https://doi.org/10.1002/pat.4448.
- 32Zhan, Y.; He, S.; Wan, X.; Zhao, S.; Bai, Y. J. Membr. Sci. 2018, 567, 76. https://doi.org/10.1016/j.memsci.2018.09.037.
- 33Gao, S. J.; Qin, H. L.; Liu, P. P.; Jin, J. J. Mater. Chem. A. 2015, 3(12), 6649. https://doi.org/10.1039/c5ta00366k.
- 34Kim, M.; Hong, W.-H.; Kim, W.; Park, S. H.; Jo, W.-K. Particuology. 2018, 36, 165. https://doi.org/10.1016/j.partic.2017.05.005.
- 35Patil, G. P.; Bagal, V. S.; Mahajan, C. R.; Chaudhari, V. R.; Suryawanshi, S. R.; More, M. A.; Chavan, P. G. J. V. Vacuum. 2016, 123, 167.
- 36Liu, Y. L.; Ai, K. L.; Lu, L. H. Chem. Rev. 2014, 114(9), 5057. https://doi.org/10.1021/cr400407a.
- 37Liu, N.; Zhang, M.; Zhang, W. F.; Cao, Y. Z.; Chen, Y. N.; Lin, X.; et al. J. Mater. Chem. A. 2015, 3(40), 20113. https://doi.org/10.1039/c5ta06314k.
- 38Guo, L. Q.; Liu, Q.; Li, G. L.; Shi, J. B.; Liu, J. Y.; Wang, T.; Jiang, G. B. Nanoscale. 2012, 4(19), 5864. https://doi.org/10.1039/c2nr31547e.
- 39Li, Q. X.; Wen, J. Y.; Neoh, K. G.; Kang, E. T.; Guo, D. F. Macromolecules. 2010, 43(20), 8336.
- 40Kim, S.; Moon, G. H.; Kim, G.; Kang, U.; Park, H.; Choi, W. J. Catal. 2017, 346, 92. https://doi.org/10.1016/j.jcat.2016.11.027.
- 41Xie, A. M.; Zhang, K.; Wu, F.; Wang, N. N.; Wang, Y.; Wang, M. Y. Catal. Sci. Technol. 2016, 6(6), 1764. https://doi.org/10.1039/c5cy01330e.
- 42Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano. 2010, 4(8), 4806. https://doi.org/10.1021/nn1006368.
- 43Kolen'ko, Y. V.; Kovnir, K. A.; Gavrilov, A. I.; Garshev, A. V.; Frantti, J.; Lebedev, O. I.; et al. J. Phys. Chem. B. 2006, 110(9), 4030. https://doi.org/10.1021/jp055687u.
- 44Li, F.; Yu, Z. X.; Shi, H.; Yang, Q. B.; Chen, Q.; Pan, Y.; et al. Chem. Eng. J. 2017, 322, 33. https://doi.org/10.1016/j.cej.2017.03.145.
- 45Chen, Q.; Yu, Z. X.; Li, F.; Yang, Y.; Pan, Y.; Peng, Y. X.; et al. J. Chem. Technol. Biotechnol. 2018, 93(3), 761. https://doi.org/10.1002/jctb.5426.
- 46Zhang, X. W.; Du, A. J.; Lee, P. F.; Sun, D. D.; Leckie, J. O. J. Membr. Sci. 2008, 313(1–2), 44. https://doi.org/10.1016/j.memsci.2007.12.045.
- 47Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Langmuir. 2013, 29(34), 10727. https://doi.org/10.1021/la401940z.
- 48Zhang, K.; Meng, Z.; Oh, W. Chin. J. Catal. 2010, 31(7), 751. https://doi.org/10.1016/S1872-2067(09)60084-X.
- 49Liu, Y.; Zhu, M.; Chen, M.; Ma, L.; Yang, B.; Li, L.; Tu, W. Chem. Eng. J. 2019, 359, 47. https://doi.org/10.1016/j.cej.2018.11.105.
- 50Han, Y.; Xu, Z.; Gao, C. Adv. Funct. Mater. 2013, 23(29), 3693. https://doi.org/10.1002/adfm.201202601.
- 51Ejaz Ahmed, F.; Lalia, B. S.; Hilal, N.; Hashaikeh, R. Desalination. 2014, 344, 48. https://doi.org/10.1016/j.desal.2014.03.010.
- 52Liu, J.; Bai, H.; Wang, Y.; Liu, Z.; Zhang, X.; Sun, D. D. Adv. Funct. Mater. 2010, 20(23), 4175. https://doi.org/10.1002/adfm.201001391.
- 53Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. New J. Chem. 2011, 35(2), 353. https://doi.org/10.1039/C0NJ00623H.
- 54Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. J. Mater. Chem. 2010, 20(25), 5301. https://doi.org/10.1039/C0JM00376J.