Chitin-halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions
Khoa Dang Nguyen
Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188 Japan
Search for more papers by this authorTruong Thi Cam Trang
Faculty of Environmental Science, Ho Chi Minh University of Science, Vietnam National University, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh, 70000 Vietnam
Search for more papers by this authorCorresponding Author
Takaomi Kobayashi
Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188 Japan
Correspondence to: T. Kobayashi ([email protected])Search for more papers by this authorKhoa Dang Nguyen
Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188 Japan
Search for more papers by this authorTruong Thi Cam Trang
Faculty of Environmental Science, Ho Chi Minh University of Science, Vietnam National University, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh, 70000 Vietnam
Search for more papers by this authorCorresponding Author
Takaomi Kobayashi
Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188 Japan
Correspondence to: T. Kobayashi ([email protected])Search for more papers by this authorABSTRACT
Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N-dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation process. The resultant Chitin-Halloysite nanoclay (CTH) hydrogel films containing HCN at 0, 0.1, 0.5, 1, and 4 wt % were used for the adsorbents of heavy metal ions. As the results, the tensile strength of the hydrogel composite was enhanced from 0.34 to 0.71 N/mm2 while the elongation decreased from 66.43% to 49.93% with the increment of HNC concentration from 0 to 4 wt %. A reduction in the water content and the increment in the modulus confirmed the formation of highly dispersed nano-composites with improved interfacial interactions between nano-fillers and matrix. In the adsorption experiments of the ternary ion of Pb2+, Cu2+, and Cd2+, the removal capacity of Pb(II) was highly retained by the CTH hydrogel film relative to Cd(II) and Cu(II), shown Langmuir model with the maximum binding amount on the hydrogel composites were followed as order Pb (8.2 mg/g), Cu (4.2 mg/g), and Cd (2.1 mg/g). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47207.
REFERENCES
- 1Barakat, M. A. Arab. J. Chem. 2011, 4, 361.
- 2Farooq, U.; Kozinski, J. A.; Khan, M. A.; Athar, M. Bioresour. Technol. 2010, 101, 5043.
- 3Ahmed, E. M. J. Adv. Res. 2015, 6, 105.
- 4Parente, M. E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jimenez-Kairuz, A. Int. J. Cosmet. Sci. 2015, 37, 511.
- 5Boonmahitthisud, A.; Nakajima, L.; Nguyen, K. D.; Kobayashi, T. J. Appl. Polym. Sci. 2017, 134, 44557.
- 6Rana, M. S.; Halim, M. A.; Safiullah, S.; Mamun Mollah, M.; Azam, M. S.; Goni, M. A.; Kamal Hossain, M.; Rana, M. M. J. Appl. Sci. 2009, 9, 2762.
- 7Liu, L. S.; Kost, J.; Yan, F.; Spiro, R. C. Polymer. 2012, 4, 997.
- 8Gong, P.; Wang, J.; Liu, B.; Ru, G.; Feng, J. Cellulose. 2016, 23, 1705.
- 9Pillai, C. K. S.; Paul, W.; Sharma, C. P. Prog. Polym. Sci. 2009, 34, 641.
- 10Wan, A. C.; Tai, B. C. Biotechnol. Adv. 2013, 31, 1776.
- 11Sohel Rana, S. P.; Parveen, S.; Fangueiro, R. In Roadmap to Sustainable Textiles and Clothing: Eco-friendly Raw Materials, Technologies, and Processing Methods, 2014, Chap. Biosynthetic Fibers: Production, Processing, Properties and Their Sustainability Parameters. pp 109–138.
- 12Rafael Pont Lezica, L. Q.-A. In Methods in Plant Biochemistry, 1990, Chap. 13.
- 13Jiang, H.; Kobayashi, T. Mater. Sci. Eng. C. 2017, 75, 478.
- 14Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Adv. Sci (Weinh). 2015, 2, 1400010.
- 15Baccour, A.; Sahnoun, R. D.; Bouaziz, J. Powder Technol. 2014, 264, 477.
- 16Zaharia, A.; Sarbu, A.; Radu, A.-L.; Jankova, K.; Daugaard, A.; Hvilsted, S.; Perrin, F.-X.; Teodorescu, M.; Munteanu, C.; Fruth-Oprisan, V. Appl. Clay Sci. 2015, 103, 46.
- 17Kurecic, M.; Sfiligoj, M. Chap. Polymer nanocomposite hydrogels for water purification. In Nanocomposites - New Trends and Developments; F. Ebrahimi, Ed., Tehran, Iran; Farzad Ebrahimi. p 161–185, 2012.
10.5772/51055 Google Scholar
- 18Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Prog. Polym. Sci. 2014, 39, 1498.
- 19Kotal, M.; Bhowmick, A. K. Prog. Polym. Sci. 2015, 51, 127.
- 20Ravindra Kamble, M. G.; Gaikawad, S.; Panda, B. K. Adv. Sci. Res. 2012, 3, 25.
- 21Hajji, S.; Ghorbel-Bellaaj, O.; Younes, I.; Jellouli, K.; Nasri, M. Int. J. Biol. Macromol. 2015, 79, 167.
- 22Hamed, I.; Özogul, F.; Regenstein, J. M. Trends Food Sci. Technol. 2016, 48, 40.
- 23Hajji, S.; Younes, I.; Ghorbel-Bellaaj, O.; Hajji, R.; Rinaudo, M.; Nasri, M.; Jellouli, K. Int. J. Biol. Macromol. 2014, 65, 298.
- 24Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Molecules. 2012, 17, 4604.
- 25Liu, M.; Zhang, Y.; Li, J.; Zhou, C. Int. J. Biol. Macromol. 2013, 58, 23.
- 26Kumirska, J.; Czerwicka, M.; Kaczynski, Z.; Bychowska, A.; Brzozowski, K.; Thoming, J.; Stepnowski, P. Mar. Drugs. 2010, 8, 1567.
- 27Zhong, C.; Cooper, A.; Kapetanovic, A.; Fang, Z.; Zhang, M.; Rolandi, M. RSC Adv. 2010, 6, 5298.
- 28Chen, X.; Chew, S. L.; Kerton, F. M.; Yan, N. Green Chem. 2014, 16, 2204.
- 29Martin Poirier, G. C. Carbohydr. Polym. 2002, 50, 363.
- 30de Vasconcelos, C. L.; Bezerril, P. M.; Pereira, M. R.; Ginani, M. F.; Fonseca, J. L. Carbohydr. Res. 2011, 346, 614.
- 31Joo, Y.; Sim, J. H.; Jeon, Y.; Lee, S. U.; Sohn, D. Chem. Commun. (Camb.). 2013, 49, 4519.
- 32Fu, H.; Wang, Y.; Chen, W.; Xiao, J. Appl. Surf. Sci. 2015, 346, 372.
- 33Hanid, N. A.; Wahit, M. U.; Guo, Q.; Mahmoodian, S.; Soheilmoghaddam, M. Carbohydr. Polym. 2014, 99, 91.
- 34Viera Khunová, I. Š. í.; Škrátek, M.; Kelnar, I.; Tomanová, K. Clay Miner. 2016, 51, 435.
- 35Molaei, A.; Amadeh, A.; Yari, M.; Reza Afshar, M., Korean J. Counsel. Psychotherapy. 2016, 59, 740.
- 36Alipoormazandarani, N.; Ghazihoseini, S.; Mohammadi Nafchi, A. Carbohydr. Polym. 2015, 134, 745.
- 37Soheilmoghaddam, M.; Wahit, M. U. Int. J. Biol. Macromol. 2013, 58, 133.
- 38Prashantha, K.; Lacrampe, M. F.; Krawczak, P. eXPRESS Polym. Lett. 2011, 5, 295.
- 39Jiang, M.-Q.; Jin, X.-Y.; Lu, X.-Q.; Chen, Z.-L. Desalination. 2010, 252, 33.
- 40Khandanlou, R.; Ahmad, M. B.; Fard Masoumi, H. R.; Shameli, K.; Basri, M.; Kalantari, K. PLoS One. 2015, 10, e0120264.
- 41Bohli, T. J. Chem. Eng. Process. Technol. 2013, 04.
- 42Chen, S. B.; Y. B. M; Chen, L.; Xian, K. Geochem. J. 2010, 44, 233.
- 43Pinto, P. X.; Al-Abed, S. R.; Reisman, D. J. Chem. Eng. J. 2011, 166, 1002.
- 44Debbaudt, A.; Ferreira, M.; Gschaider, M. Carbohydr. Polym. 2004, 56, 321.
- 45Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D. N.; Kyzas, G. Z. Int. J. Mol. Sci. 2017, 18, 114.
- 46Wysokowski, M.; Klapiszewski, L.; Moszynski, D.; Bartczak, P.; Szatkowski, T.; Majchrzak, I.; Siwinska-Stefanska, K.; Bazhenov, V. V.; Jesionowski, T. Mar. Drugs. 2014, 12, 2245.
- 47Oh, D. X.; Shin, S.; Lim, C.; Hwang, D. S. Materials (Basel). 2013, 6, 3826.
- 48Yang Meng, M. W.; Tang, M.; Hong, G.; Gao, J.; Chen, Y. Appl. Sci. 2017, 7, 1129.
- 49Soma, M.; G. J. C. A. B. K. G. T. Clay Miner. 1992, 27, 413.
- 50Saha, D.; Barakat, S.; Van Bramer, S. E.; Nelson, K. A.; Hensley, D. K.; Chen, J. ACS Appl. Mater. Interfaces. 2016, 8, 34132.
- 51Zhou, D.; Zhang, L.; Guo, S. Water Res. 2005, 39, 3755.