Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment
Corresponding Author
Ehsan Nourafkan
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Correspondence to: E. Nourafkan ([email protected])Search for more papers by this authorMaje Alhaji Haruna
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Search for more papers by this authorJabbar Gardy
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Search for more papers by this authorDongsheng Wen
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Ehsan Nourafkan
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Correspondence to: E. Nourafkan ([email protected])Search for more papers by this authorMaje Alhaji Haruna
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Search for more papers by this authorJabbar Gardy
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
Search for more papers by this authorDongsheng Wen
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT United Kingdom
School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorABSTRACT
This work aims to improve the rheological properties and stability of multiwalled carbon nanotubes (MWCNTs)/acrylamide (AA) base skeleton polymer blends at harsh environment of high salinity-high temperature (HS-HT) or various pH. Different co/terpolymers have been accomplished to modify the structure of AA polymer by free-radical copolymerization of AA-based monomers. Anionic, cationic, and hydrophobic functional groups were used for the synthesis of polyelectrolyte, polyampholytic, and partially hydrophobic AA polymer types. The conversion, molecular weight, and poly dispersity of co/terpolymers have been evaluated by nuclear magnetic resonance (1H-NMR), gel permeation chromatography, and differential scanning calorimetry analysis. The effects of sonication power, concentration of polymer, and concentration of MWCNTs were also investigated on rheological behavior of co/terpolymers. The results show that negative polyelectrolyte and polyampholytic polymers are the best candidates for the improvement of MWCNTs/polymer stability and viscosity at HS-HT and alkali environment, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47205.
Supporting Information
Filename | Description |
---|---|
app47205-sup-0001-Figures.docxWord 2007 document , 3.7 MB |
Figure S1 Set-up for synthesis of co/ter polymers. Figure S2. H1 NMR spectra of different sample 3: (a) AA-ATAC monomers blend, (b) AA-ATAC copolymer, and sample 4: (c) AA-APSA-IAA monomers blend, (d) AA-APSA-IAA terpolymer. Figure S3. (a) Test tubes containing 1000 ppm of MWCNT and different concentration of polymer at the end of centrifuge operation: (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Chegenizadeh, N.; Saeedi, A.; Quan, X. Petroleum. 2016, 2, 324.
10.1016/j.petlm.2016.10.002 Google Scholar
- 2Nazari Moghaddam, R.; Bahramian, A.; Fakhroueian, Z.; Karimi, A.; Arya, S. Energy Fuels. 2015, 29, 2111.
- 3Kamibayashi, M.; Ogura, H.; Otsubo, Y. Ind. Eng. Chem. Res. 2006, 45, 6899.
- 4Maghzi, A.; Kharrat, R.; Mohebbi, A.; Ghazanfari, M. H. Fuel. 2014, 123, 123.
- 5Khalili Nezhad, S. S.; Cheraghian, G. Appl. Nanosci. 2016, 6, 923.
- 6Pope, G.A. Overview of Chemical EOR, Casper EOR Workshop, The University of Texas: Austin, TX, 2007.
- 7Chang, H. L.; Zhang, Z. Q.; Wang, Q. M.; Xu, Z. S.; Guo, Z. D.; Sun, H. Q.; Cao, X. L.; Qiao, Q. J. Pet. Technol. 2006, 58, 84.
10.2118/89175-JPT Google Scholar
- 8Estes, J. C. Adv. Chem. 1986, 213, 437.
- 9Gaillard, N.; Thomas, A.; Favero, C. SPE International Symposium on Oilfield Chemistry, SPE-164072-MS, The Woodlands, Texas, USA, 2013.
- 10Abidin, A. Z.; Puspasari, T.; Nugroho, W. A. Procedia Chem. 2012, 4, 11.
- 11Li, X.; Xu, Z.; Yin, H.; Feng, Y.; Quan, H. Energy Fuels. 2017, 31, 2479.
- 12Pei, Y.; Zhao, L.; Du, G.; Li, N.; Xu, K.; Yang, H. Petroleum. 2016, 2, 399.
10.1016/j.petlm.2016.08.006 Google Scholar
- 13Albonico, P.; Lockhart, T. P. J. Appl. Polym. Sci. 1995, 55, 69.
- 14Seright, R. S.; Campbell, A.; Mozley, P.; Han, P. J. SPE. 2010, 15, 1.
- 15Cheraghian, G.; Khalili Nezhad, S. S.; Kamari, M.; Hemmati, M.; Masihi, M. J. Pet. Explor. Prod. Technol. 2015, 5, 189.
- 16Hu, Z.; Haruna, M.; Gao, H.; Nourafkan, E.; Wen, D. Ind. Eng. Chem. Res. 2017, 56, 3456.
- 17Hussein, I. A.; Asrof Ali, S. K.; Suleiman, M. A.; Umar, Y. Eur. Polym. J. 2010, 46, 1063.
- 18Ranka, M.; Brown, P.; Hatton, T. A. ACS Appl. Mater. Interfaces. 2015, 7, 19651.
- 19Drexler, S.; Faria, J.; Ruiz, M. P.; Harwell, J. H.; Resasco, D. E. Energy Fuels. 2012, 26, 2231.
- 20Kadhum, M. J.; Swatske, D.; Weston, J.; Resasco, D. E.; Shiau, B.; Harwell, J. H. Energy Fuels. 2017, 31, 5024.
- 21Abduo, M. I.; Dahab, A. S.; Abuseda, H.; Abdul Aziz, A. M.; Elhossieny, M. S. Egypt. J. Pet. 2016, 25, 459.
10.1016/j.ejpe.2015.10.008 Google Scholar
- 22Arake, T.; Shikinaka, K.; Sugioka, T.; Hashimoto, H.; Sumida, Y.; Kaneko, Y. Polymer. 2013, 54, 5643.
- 23Xu, L.; Ye, Z.; Siemann, S.; Gu, Z. Polymer. 2014, 55, 3120.
- 24Han, B.; Liu, W.; Zhao, X.; Cai, Z.; Zhao, D. Sci. Total Environ. 2017, 599-600, 188.
- 25Sakellariou, G.; Priftis, D.; Baskaran, D. Chem. Soc. Rev. 2013, 42, 677.
- 26Mahdavian, A. R.; Abdollahi, M.; Bijanzadeh, H. R. J. Appl. Polym. Sci. 2004, 93, 2007.
- 27Wu, S.; Shanks, R. A. Polym. Int. 2004, 53, 1821.
- 28Durmaz, S.; Okay, O. Polymer. 2000, 41, 3693.
- 29Rosa, F.; Bordado, J.; Casquilho, M. J. Appl. Polym. Sci. 2003, 87, 192.
- 30Liao, Y.; Zheng, H. L.; Qian, L.; Sun, Y. J.; Dai, L.; Xue, W. W. Ind. Eng. Chem. Res. 2014, 53, 11193.
- 31Li, X.; Zheng, H. L.; Gao, B. Y.; Sun, Y. J.; Tang, X. M.; Xu, B. C. RSC Adv. 2017, 7, 208.
- 32Muller, G.; Fenyo, J. C.; Selegny, E. J. Appl. Polym. Sci. 1980, 25, 627.
- 33Al-Sabagh, A. M.; Kandile, N. G.; El-Ghazawy, R. A.; Noor El-Din, M. R.; El-Sharaky, E. A. Egypt. J. Pet. 2016, 25, 433.
10.1016/j.ejpe.2015.03.014 Google Scholar
- 34Chang, Y.; McCormick, C. L. Polymer. 1994, 35, 3503.
- 35Ezzell, S. A.; McCormick, C. L. Macromolecules. 1992, 25, 1881.
- 36Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Prog. Polym. Sci. 2010, 35, 837.
- 37Bilalis, P.; Katsigiannopoulos, D.; Avgeropoulos, A.; Sakellariou, G. RSC Adv. 2014, 4, 2911.
- 38Fujigaya, T.; Nakashima, N. Sci. Technol. Adv. Mater. 2015, 16, 024802.
- 39Pramanik, C.; Gissinger, J. R.; Kumar, S.; Heinz, H. ACS Nano. 2017, 11, 12805.
- 40Ajayan, P. M.; Tour, J. M. Nature. 2007, 447, 1066.
- 41Noguchi, Y.; Fujigaya, T.; Niidome, Y.; Nakashima, N. Chem. Phys. Lett. 2008, 455, 249.
- 42Bagaria, H. G.; Xue, Z.; Neilson, B. M.; Worthen, A. J.; Yoon, K. Y.; Nayak, S.; Cheng, V.; Lee, J. H.; Bielawski, C. W.; Johnston, K. P. ACS Appl. Mater. Interfaces. 2013, 5, 3329.
- 43Hirasaki, G.; Miller, C.; Puerto, M. J. SPE. 2011, 16, 889.
- 44Yasuda, K.; Okajima, K.; Kamide, K. J. Polym. 1988, 20, 1101.
- 45Ma, Q.; Shuler, P. J.; Aften, C. W.; Tang, Y. Polym. Degrad. Stabil. 2015, 121, 69.
- 46Niu, Y.; Ouyang, J.; Zhu, Z.; Wang, G.; Sun, G.; Shi, L. Presented at the International Symposium on Oilfield Chemistry, SPE 65378, Houston, TX, Feb 13–16, 2001.
- 47Martin, F.D.; Sherwood, N.S. Presented at SPE Rocky Mountain Regional Meeting, SPE 5339, Denver, CO, Apr 7–9, 1975.
- 48Sukpisan, J.; Kanatharana, J.; Sirivat, A.; Wang, S. Q. J. Polym. Sci. B. 1998, 36, 743.
- 49Hodgson, D. P.; Amis, E. J. Polyelectrolyte, Science and Technology; New York: Marcel Dekker, 1992. p. 127.
- 50Nativ-Roth, E.; Shvartzman-Cohen, R.; Bounioux, C.; Florent, M.; Zhang, D.; Szleifer, I.; Yerushalmi-Rozen, R. Macromolecules. 2007, 40, 3676.
- 51Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B. 2005, 109, 10009.
- 52Ansari, R.; Ajori, S.; Rouhi, S. Appl. Surf. Sci. 2015, 332, 640.
- 53Walter, J.; Thajudeen, T.; Sub, S.; Segetsa, D.; Peukert, W. Nanoscale. 2015, 7, 6574.
- 54Chiu, H. T.; Chang, C. Y.; Chiang, T. Y.; Kuo, M. T.; Wang, Y. H. J. Polym. Res. 2011, 18, 1587.
- 55Sobisch, T.; Lerche, D. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 114.
- 56Nourafkan, E.; Asachi, M.; Hu, Z.; Gao, H.; Wen, D. JIEC. 2018, 64, 390.
- 57Nourafkan, E.; Asachi, M.; Gao, H.; Raza, G. H.; Wen, D. JIEC. 2017, 50, 57.
- 58Fernandes, A. R.; Ferreira, N. R.; Fangueiro, J. F.; Santos, A. C.; Veiga, F. J.; Cabral, C.; Silva, A. M.; Souto, E. B. Saudi Pharm. J. 2017, 25, 1117.
- 59Feigin, R. I.; Napper, D. H. J. Colloid Interface Sci. 1980, 75, 525.
- 60Gong, X.; Wang, Z.; Ngai, T. Chem. Commun. 2014, 50, 6556.
- 61Bagaria, H. G.; Yoon, K. Y.; Neilson, B. M.; Cheng, V.; Lee, J. H.; Worthen, A. J.; Xue, Z.; Huh, C.; Bryant, S. L.; Bielawski, C. W.; Johnston, K. P. Langmuir. 2013, 29, 3195.
- 62Mccormick, C. L.; Elliott, D. L. Macromolecules. 1986, 19, 542.
- 63Potschke, P.; Abdel-Goad, M.; Alig, I.; Dudkin, S.; Lellinger, D. Polymer. 2004, 45, 8863.
- 64Zhang, Q.; Lippits, D. R.; Rastogi, S. Macromolecules. 2006, 39, 658.
- 65Cassagnau, P. Polymer. 2013, 54, 4762.