Carbon foam production from bio-based polyols of liquefied spruce tree sawdust: Effects of biomass/solvent mass ratio and pyrolytic oil addition
Corresponding Author
Nurgul Ozbay
Engineering Faculty, Chemical Engineering Department, Gulumbe Campus, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
Correspondence to: N. Ozbay (E-mail: [email protected]) and A. S. Yargic (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Adife Seyda Yargic
Engineering Faculty, Chemical Engineering Department, Gulumbe Campus, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
Correspondence to: N. Ozbay (E-mail: [email protected]) and A. S. Yargic (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Nurgul Ozbay
Engineering Faculty, Chemical Engineering Department, Gulumbe Campus, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
Correspondence to: N. Ozbay (E-mail: [email protected]) and A. S. Yargic (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Adife Seyda Yargic
Engineering Faculty, Chemical Engineering Department, Gulumbe Campus, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
Correspondence to: N. Ozbay (E-mail: [email protected]) and A. S. Yargic (E-mail: [email protected])Search for more papers by this authorABSTRACT
One of the next-generation structural materials is carbon foam. Porous materials have become an intriguing alternative material to traditional ones in many utilizations based on their light weight and incomparable properties. Coal or fossil oils are conventionally used to produce pitch, phenolic resin, and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, spruce tree sawdust was liquefied under mild conditions with different solvent type (phenol or phenol + bio-oil mixture). The unique aspect of this work is the synthesis of bio-polyol when pyrolytic oil is used as an alternative to phenol in the solvolysis reaction and its evaluation in carbon foam production with multilayer graphene sheets. Therewithal, the ratios of biomass to solvent were 1/3 as well as 1/5, and the comparison of product characteristics is another originality of the study. Slow pyrolysis of spruce tree sawdust was performed under static atmosphere and bio-oil was characterized with elemental analysis and various chromatographic and spectroscopic techniques. The effect of mass ratio of biomass/solvent on the characteristics of porous resin foams synthesized from liquefaction product. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams, and activated carbon foams from liquefied spruce tree sawdust was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, true/bulk density, and compressive strength tests. Although the surface area values decreased when bio-oil was added as a solvent, it was determined that the compression strengths of the produced carbon foams (up to 1.080 MPa) were higher than that of conventional phenolic foams. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47185.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Supporting Information
Filename | Description |
---|---|
app47185-sup-0001-AppendixS1.pdfPDF document, 78.5 KB | Appendix S1: Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Lin, Q.; Luo, B.; Qu, L.; Fang, C.; Chen, Z. J. Anal. Appl. Pyrol. 2013, 104, 714.
- 2Wang, M. X.; Wang, C. Y.; Li, T. Q.; Hu, Z. J. Carbon. 2008, 46(1), 84.
- 3Baran, D.; Yardim, M. F.; Atakül, H.; Ekinci, E. New Carbon Mater. 2013, 28(2), 127.
- 4Bao, Y.; Zhan, L.; Wang, C.; Wang, Y.; Qiao, W.; Ling, L. Mater. Lett. 2011, 65(19), 3154.
- 5Li, W.; Huang, Z.; Wu, Y.; Zhao, X.; Liu, S. Ind. Crop Prod. 2015, 64, 215.
- 6Matviya, T.; Lucas, R. High density carbon foam. U.S. Pat. US20060222854A1 (2006).
- 7Touchstone Research Laboratories. Carbon Foam Fireproof Composite Core. Available at: http://www.cfoam.com/fireproofcore/ (Accessed 05 March 2018).
- 8Liang, C.; Li, Z.; Dai, S. Angew. Chem., Int. Ed. 2008, 47(20), 3696.
- 9 Coal-Based Carbon Foam; Washington, DC: U.S. Army Space and Missile Defense Command/U.S. Army Forces Strategic Command, 2016.
- 10Spradling, D. M.; Guth, R. A. Adv. Mater. Processes. 2003, 161(11), 29.
- 11Inagaki, M.; Qiu, J.; Guo, Q. Carbon. 2015, 87, 128.
- 12Jana, P. Carbon Foam–Its Preparation, Characterisation and Application; Italy: University of Trento Department of Industrial Engineering, Chemistry & Ceramics Group Seminars on “Advanced Materials”, 2014.
- 13Focke, W. W.; Badenhorst, H.; Ramjee, S.; Kruger, H. J.; Van Schalkwyk, R.; Rand, B. Carbon. 2014, 73, 41.
- 14Jana, P.; Fierro, V.; Pizzi, A.; Celzard, A. Biomass Bioenergy. 2014, 67, 312.
- 15Ríos, R. V. R. A.; Martinez-Escandell, M.; Molina-Sabio, M.; Rodriguez-Reinoso, F. Carbon. 2006, 44(8), 1448.
- 16Wang, R.; Li, W.; Liu, S. J. Mater. Sci. 2012, 47(4), 1977.
- 17Sun, X.; Wang, X.; Feng, N.; Qiao, L.; Li, X.; He, D. J. Anal. Appl. Pyrol. 2013, 100, 181.
- 18Lv, Y.; Gan, L.; Liu, M.; Xiong, W.; Xu, Z.; Zhu, D.; Wright, D. S. J. Power Sources. 2012, 209, 152.
- 19Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Velasco, L. F.; Parra, J. B.; Ania, C. O. Microporous Mesoporous Mater. 2012, 154, 56.
- 20Alma M. H. In International Conference on Wood Adhesives, Toronto, 2013.
- 21Zhang, T.; Zhou, Y.; Liu, D.; Petrus, L. Bioresour. Technol. 2007, 98(7), 1454.
- 22Wu, C. C.; Lee, W. J. Wood Sci. Technol. 2011, 45(3), 559.
- 23Ma, X.; Zhao, G. Fiber Polym. 2008, 9(4), 405.
- 24Szczurek, A.; Fierro, V.; Pizzi, A.; Stauber, M.; Celzard, A. Ind. Crops Prod. 2014, 54, 40.
- 25Karimi, E.; Briens, C.; Berruti, F.; Moloodi, S.; Tzanetakis, T.; Thomson, M. J.; Schlaf, M. Energy Fuel. 2010, 24(12), 6586.
- 26Dos-Santos, C. G.; Costa, M. A.; De Morais, W. A.; Pasa, V. J. Appl. Polym. Sci. 2010, 115(2), 923.
- 27Ozbay, N.; Yargic, A. S. J. Appl. Chem. 2016, 2016, 1.
10.1155/2016/8236238 Google Scholar
- 28Uzun, B. B.; Apaydin-Varol, E.; Ateş, F.; Özbay, N.; Pütün, A. E. Fuel. 2010, 89(1), 176.
- 29Saygılı, H.; Güzel, F.; Önal, Y. J. Clean. Prod. 2015, 93, 84.
- 30Ozbay, N.; Putun, A. E.; Uzun, B. B.; Putun, E. Renewable Energy. 2001, 24, 615.
- 31Ozbay, N.; Putun, A. E.; Putun, E. Int. J. Energy Res. 2006, 30, 501.
- 32Putun, A. E.; Ozbay, N.; Onal, E. P.; Putun, E. Fuel Process. Technol. 2005, 86, 1207.
- 33Ozbay, N.; Yargic, A. S. J. Clean. Prod. 2015, 100, 333.
- 34Cardoso, N. F.; Pinto, R. B.; Lima, E. C.; Calvete, T.; Amavisca, C. V.; Royer, B.; Cunha, M. L.; Fernandes, T. H. M.; Pinto, I. S. Desalination. 2011, 269(1), 92.
- 35Ahmad, M. A.; Rahman, N. K. Chem. Eng. J. 2011, 170(1), 154.
- 36Özbay, N.; Apaydın-Varol, E.; Uzun, B. B.; Pütün, A. E. Energy. 2008, 33(8), 1233.
- 37Lin, L.; Yao, Y.; Yoshioka, M.; Shiraishi, N. Holzforschung. 1997, 51, 316.
- 38Matsushita, Y.; Sano, H.; Imai, M.; Imai, T.; Fukushima, K. J. Wood Sci. 2007, 53, 67.
- 39Kane, J. F., Mowrer, N. R. U.S. Pat. US5736619A (1998).
- 40Thomas, R.; Vijayan, P.; Thomas, S. Recycling of thermosetting polymers. In Recent Developments In Polymer Recycling, India: Transworld Research Network, Kerala, 2011. p. 121.
- 41Melo, B. N.; Pasa, V. J. Appl. Polym. Sci. 2004, 92(5), 3287.
- 42Wilson, P.; Vijayan, S.; Prabhakaran, K. Carbon. 2017, 118, 545.
- 43Shi, L.; Gao, Q.; Wu, Y. Electroynalysis (NY). 2009, 21(6), 715.
- 44Araújo, R. C. S.; Pasa, V. M. D.; Melo, B. N. Eur. Polym. J. 2005, 41(6), 1420.
- 45Fayos, J. J. Solid State Chem. 1999, 148(2), 278.
- 46Hull, A. W. Berichte de Deutschen Chemischen Gesellschaft. 1926, 59, 2433.
- 47Lipson, H.; Stokes, A. R. Nature. 1942, 149(3777), 328.
- 48Apaydın-Varol, E.; Erülken, Y. J. Taiwan Inst. Chem. Eng. 2015, 54, 37.
- 49Girgis, B. S.; Yunis, S. S.; Soliman, A. M. Mater. Lett. 2002, 57(1), 164.
- 50López, F. A.; Centeno, T. A.; García-Díaz, I.; Alguacil, F. J. J. Anal. Appl. Pyrol. 2013, 104, 551.
- 51Tushar, M. S. H. K.; Mahinpey, N.; Khan, A.; Ibrahim, H.; Kumar, P.; Idem, R. Biomass Bioenergy. 2012, 37, 97.
- 52Zhang, S.; Zheng, M.; Lin, Z.; Li, N.; Liu, Y.; Zhao, B.; Pang, H.; Cao, J.; He, P.; Shi, Y. J. Mater. Chem. A. 2014, 2(38), 15889.
- 53Takagi, H.; Maruyama, K.; Yoshizawa, N.; Yamada, Y.; Sato, Y. Fuel. 2004, 83(17), 2427.
- 54Liu, C. L.; Guo, Q. G.; Shi, J. L.; Liu, L. New Carbon Mater. 2004, 19(2), 124.
- 55Prauchner, M. J.; Pasa, V. M. D.; Molhallem, N. D. S.; Otani, C.; Otani, S.; Pardini, L. C. Biomass Bioenergy. 2005, 28, 53.
- 56Lee, G. J.; Pyun, S. I. Synthesis and characterization of nanoporous carbon and its electrochemical application to electrode material for supercapacitors. In Modern Aspects of Electrochemistry, New York, NY: Springer, 2007. p. 139.
10.1007/978-0-387-46108-3_2 Google Scholar
- 57Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity. 2nd ed.; New York: Academic Press, 1982.
- 58 Food and Agriculture Organization of the United Unions. The research progress of biomass pyrolysis processes. Available at: http://www.fao.org/3/a-t4470e/t4470e0a.htm (Accessed 14 November 2016).
- 59Sigma Aldrich. Liquefied phenol. Available at: www.sigmaaldrich.com/catalog/product/sial/p9346 (Accessed 14 November 2016).
- 60Inagaki, M.; Ibuki, T.; Takeichi, T. J. Appl. Polym. Sci. 1992, 44(3), 521.
- 61Graphene Supermarket. Available at: https://graphene-supermarket.com/3D-Multilayer-Freestanding-Graphene-Film-2-x2-Foam-2x2.html (Accessed 15 January 2017).
- 62Choi, S.; Sankar, B. J. Compos. Mater. 2003, 37(23), 2101.
- 63Reyes, G.; Rangaraj, S. Compos., Part A: Appl. Sci. Manuf. 2011, 42(1), 1.
- 64Shim, S.; Rhym, Y.; Nam, G.; Byun, H. Carbon Lett. 2012, 13(2), 94.
- 65Septevani, A. A.; Evans, D. A.; Chaleat, C.; Martin, D. J.; Annamalai, P. K. Ind. Crop Prod. 2015, 66, 16.
- 66Chen, C.; Kennel, E. B.; Stiller, A. H.; Stansberry, P. G.; Zondlo, J. W. Carbon. 2006, 44(8), 1535.
- 67Manocha, S. M.; Patel, K.; Manocha, L. M. Indian J. Eng. Mater. Sci. 2010, 17, 338.
- 68Tondi, G.; Fierro, V.; Pizzi, A.; Celzard, A. Carbon. 2009, 47(6), 1480.
- 69Gallego, N.; Klett, J. Carbon. 2003, 41, 1461.
- 70Klett J. U.S. Pat. US6261485B1 (2001).
- 71Manocha, S.; Patel, K.; Manocha, L. Indian J. Eng. Mater. Sci. 2010, 17, 338.
- 72Lee, S.; Teramoto, Y.; Shiraishi, N. J. Appl. Polym. Sci. 2002, 84, 468.
- 73Wang, X.; Zhong, J.; Wang, Y.; Yu, M. Carbon. 2006, 44, 1560.
- 74Liu, H.; Li, T.; Shi, Y.; Wang, X.; Lv, J.; Zhang, W. J. Anal. Appl. Pyrol. 2014, 108, 310.
- 75Liu, H.; Li, T.; Wang, X.; Zhang, W.; Zhao, T. J. Anal. Appl. Pyrol. 2014, 110, 442.
- 76Eksilioglu, A.; Gencay, N.; Yardım, M.; Ekinci, E. J. Mater. Sci. 2006, 41, 2743.
- 77Chen, C.; Kennel, E. B.; Stiller, A. H.; Stansberry, P. G.; Zondlo, J. W. Carbon. 2006, 44(8), 1535.
- 78Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. Carbon. 2010, 48(12), 3523.
- 79Li, W.; Zhang, H.; Xiong, X.; Xiao, F. Mater. Sci. Eng. 2011, 528(6), 2999.