Noncovalent functionalization of boron nitride and its effect on the thermal conductivity of polycarbonate composites
Jinwei Wang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorHongrui Li
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorGuohua Li
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorZhenxin Liu
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 People's Republic of China
Search for more papers by this authorQingxin Zhang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorNongyue Wang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorCorresponding Author
Xiongwei Qu
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Correspondence to: X. Qu (E-mail: [email protected])Search for more papers by this authorJinwei Wang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorHongrui Li
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorGuohua Li
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorZhenxin Liu
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 People's Republic of China
Search for more papers by this authorQingxin Zhang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorNongyue Wang
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Search for more papers by this authorCorresponding Author
Xiongwei Qu
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Correspondence to: X. Qu (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polycarbonate (PC) is an engineering thermoplastic with excellent insulation and mechanical properties. However, the low thermal conductivity restricted its application in electronic devices. Hexagonal boron nitride (h-BN) microparticle, a promising material with high thermal conductivity, was functionalized with cationic polyacrylamide (CPAM) and introduced into PC matrix to improve the thermal conductivity. SEM and XRD analysis showed that the modified BN (CBN) particles oriented and formed thermal conductive pathways within PC matrix. The formation of large-area oriented CBN significantly improved the thermal conductivity and thermal stability of composites. At 20 wt % CBN loading, the thermal conductivity of 0.7341 Wm−1 K−1 and the temperature for 5% weight loss (T5) of 498.6 °C were obtained, which was 3.1 times and 77 °C higher than that of pure PC, respectively. Furthermore, outstanding electrical insulation property of matrix was retained in the composites. These results revealed that PC/CBN composite was a promising material for thermal management and electrical enclosure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44978.
REFERENCES
- 1 Han, Z.; Fina, A. Prog. Polym. Sci. 2011, 36, 914.
- 2 Yang, N.; Xu, C.; Hou, J.; Zhang, Q.; Grami, M. E.; He, L.; Wang, N.; Qu, X. RSC Adv. 2016, 6, 18279.
- 3 Ishida, H.; Rimdusit, S. Thermochim. Acta 1998, 320, 177.
- 4 Cai, D.; Song, M. Carbon 2008, 46, 2107.
- 5 Yu, S.; Lee, J. W.; Han, T. H.; Park, C.; Kwon, Y.; Hong, S. M.; Koo, C. M. ACS Appl. Mater. Interface 2013, 5, 11618.
- 6 Ye, C. M.; Shentu, B. Q.; Weng, Z. X. J. Appl. Polym. Sci. 2006, 101, 3806.
- 7 Xie, X.; Mai, Y.; Zhou, X. Mater. Sci. Eng. R 2005, 49, 89.
- 8 Song, W. L.; Veca, L. M.; Kong, C. Y.; Ghose, S.; Connell, J. W.; Wang, P.; Cao, L.; Lin, Y.; Meziani, M. J.; Qian, H.; LeCroy, G. E.; Sun, Y. P. Polymer 2012, 53, 3910.
- 9 Fang, L.; Wu, C.; Qian, R.; Xie, L.; Yang, K.; Jiang, P. RSC Adv. 2014, 4, 21010.
- 10 Yu, S.; Hing, P.; Hu, X. Compos. A 2002, 33, 289.
- 11 Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.
- 12 Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
- 13 Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K. P.; Babakhani, A.; Idrobo, J. C.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nat. Nanotechnol. 2013, 8, 119.
- 14 Shi, Y.; Hamsen, C.; Jia, X.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J. Nano Lett. 2010, 10, 4134.
- 15 Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.
- 16 Yu, J.; Huang, X.; Wu, C.; Wang, G.; Jiang, P. Polymer 2012, 53, 471.
- 17 Permal, A.; Devarajan, M.; Hung, H. L.; Zahner, T.; Lacey, D.; Ibrahim, K. J. Mater. Sci. 2016, 51, 7415.
- 18 Jin, W.; Zhang, W.; Gao, Y.; Liang, G.; Gu, A.; Yuan, L. Appl. Surf. Sci. 2013, 270, 561.
- 19 Joni, I. M.; Balgis, R.; Ogi, T.; Iwaki, T.; Okuyama, K. Colloids Surf. A 2011, 388, 49.
- 20 Ooi, N.; Rajan, V.; Gottlieb, J.; Catherine, Y.; Adams, J. B. Modell. Simul. Mater. Sci. Eng. 2006, 14, 515.
- 21 Wattanakul, K.; Manuspiya, H.; Yanumet, N. Colloids Surf. A 2010, 369, 203.
- 22 An, W.; Wu, X.; Yang, J. L.; Zeng, X. C. J. Phys. Chem. C 2007, 111, 14105.
- 23 Yu, D.; Cai, J. Y.; Liu, X.; Church, J. S.; Wang, L. Int. J. Biol. Macromol. 2014, 70, 236.
- 24 Lin, Y.; Wiliams, T. V.; Connell, J. W. J. Phys. Chem. Lett. 2010, 1, 277.
- 25 Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. J. Phys. Chem. C 2011, 115, 2679.
- 26 Eichler, J.; Lesniak, C. J. Eur. Ceram. Soc. 2008, 28, 1105.
- 27 Du, M.; Wu, Y.; Hao, X. CrystEngComm 2013, 15, 1782.
- 28 McLauchlin, A. R.; Thomas, N. L. Polym. Degrad. Stabil. 2009, 94, 868.
- 29 Cao, Y.; Feng, J.; Wu, P. Carbon 2010, 48, 3834.
- 30 Cho, H. B.; Nakayama, T.; Tokoi, Y.; Endo, S.; Tanaka, S.; Suzuki, T.; Jiang, W.; Suematsu, H.; Niihara, K. Compos. Sci. Technol. 2010, 70, 1681.
Citing Literature
July 5, 2017