Compressive mechanical properties of HTPB propellant at low, intermediate, and high strain rates
Long Yang
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorCorresponding Author
Kan Xie
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Correspondence to: K. Xie (E-mail: [email protected])Search for more papers by this authorJiangfeng Pei
Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi, 710065 People's Republic of China
Search for more papers by this authorXin Sui
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorNingfei Wang
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorLong Yang
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorCorresponding Author
Kan Xie
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Correspondence to: K. Xie (E-mail: [email protected])Search for more papers by this authorJiangfeng Pei
Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi, 710065 People's Republic of China
Search for more papers by this authorXin Sui
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorNingfei Wang
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 People's Republic of China
Search for more papers by this authorABSTRACT
Low, intermediate, and high strain rate compression testing (1.7 × 10−4 to 2500 s−1) of the hydroxyl-terminated polybutadiene (HTPB) propellant at room temperature, were performed using a universal testing machine, a hydraulic testing machine, and a split Hopkinson pressure bar (SHPB), respectively. Results show that the stress linearly increases with strain at each condition; the increasing trend of stress at a given strain with the logarithm of strain rate changes from a linear to an exponential form at 1 s−1. By combining these characteristics, we propose a rate-dependent constitutive model which is a linearly elastic component as a base model, then multiplied by a rate-dependent component. Comparison of model with experimental data shows that it can characterize the compressive mechanical properties of HTPB propellant at strain rates from 1.7 × 10−4 to 2500 s−1. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43512.
REFERENCES
- 1 Kakavas, P. A. Int. J. Solids Struct. 2014, 51, 2019.
- 2 Zalewski, R.; Wolszakiewicz, T. Cent. Eur. J. Energ. Mater. 2011, 8, 223.
- 3 Sui, X.; Wang, N.; Wan, Q.; Bi, S. Propellants Explos. Pyrotech. 2010, 35, 535.
- 4 Deng, B.; Xie, Y.; Tang, G. Propellants Explos. Pyrotech. 2014, 39, 117.
- 5 Chou, S. C.; Robertson, K. D.; Rainey, J. H. Exp. Mech. 1973, 13, 422.
- 6 Siviour, C. R.; Walley, S. M.; Proud, W. G.; Field, J. E. Polymer 2005, 46, 12546.
- 7 Mulliken, A. D.; Boyce, M. C. Int. J. Solids Struct. 2006, 43, 1331.
- 8 Jordan, J. L.; Foley, J. R.; Siviour, C. R. Mech. Time-Depend. Mater. 2008, 12, 249.
- 9 Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Polymer 2006, 47, 319.
- 10 Walley, S. M.; Field, J. E.; Pope, P. H.; Safford, N. A. Philos. Trans. R. Soc. Lond. A 1989, 328, 1.
- 11 Walley, S. M.; Field, J. E.; Pope, P. H.; Safford, N. A. J. Phys. III 1991, 1, 889.
- 12 Walley, S. M.; Field, J. E. Dymat J. 1994, 1, 211.
- 13 Bergström, J. S.; Boyce, M. C. J. Mech. Phys. Solids 1998, 46, 931.
- 14 Bergström, J. S.; Boyce, M. C. Mech. Mater. 2001, 33, 523.
- 15 Yang, L.; Shim, V. P. W.; Lim, C. T. Int. J. Impact Eng. 2000, 24, 545.
- 16 Shim, V. P. W.; Yang, L.; Lim, C. T.; Law, P. H. J. Appl. Polym. Sci. 2004, 92, 523.
- 17 Pouriayevali, H.; Guo, Y.; Shim, V. P. W. Int. J. Impact Eng. 2012, 47, 71.
- 18 Khajehsaeid, H.; Arghavani, J.; Naghdabadi, R.; Sohrabpour, S. Int. J. Eng. Sci. 2014, 79, 44.
- 19 Zhang, J.; Zheng, J.; Chen, X.; Sun, C.; Xu, J. J. Eng. Mater. Technol. 2014, 136, 337.
- 20 Chen, W.; Zhou, B. Mech. Time-Depend. Mater. 1998, 2, 103.
- 21 Song, B.; Chen, W.; Cheng, M. J. Appl. Polym. Sci. 2004, 92, 1553.
- 22 Mohotti, D.; Ali, M.; Ngo, T.; Lu, J.; Mendis, P. Mater. Des. 2014, 53, 830.
- 23 Duncan, E. J. S.; Margetson, J. Propellants Explos. Pyrotech. 1998, 23, 94.
- 24 Swanson, S. R.; Christensen, L. W. J. Spacecraft 1983, 20, 559.
- 25 Xu, J.; Chen, X.; Wang, H.; Zheng, J.; Zhou, C. Int. J. Solids Struct. 2014, 51, 3209.
- 26 Ho, S. Y. J. Propul. Power 2002, 18, 1106.
- 27 Siviour, C. R.; Laity, P. R.; Proud, W. G.; Field, J. E.; Porter, D.; Church, P. D.; Gould, P.; Huntingdon-Thresher, W. Proc. R. Soc. Lond. A 2008, 464, 1229.
- 28 Sun, C.; Xu, J.; Chen, X.; Zheng, J.; Zheng, Y.; Wang, W. Mech. Mater. 2015, 89, 35.
- 29 Xu, S.; Ruan, D.; Beynon, J. H.; Rong, Y. Mater. Sci. Eng. A 2013, 573, 132.
- 30 Paul, S. K.; Raj, A.; Biswas, P.; Manikandan, G.; Verma, R. K. Mater. Des. 2014, 57, 211.
- 31 Raman, S. N.; Ngo, T.; Lu, J.; Mendis, P. Mater. Des. 2013, 50, 124.
- 32 Wang, Z.; Qiang, H.; Wang, G.; Huang, Q. J. Appl. Polym. Sci. 2015, 132, 42104.
- 33 Wang, Z.; Qiang, H.; Wang, G. Propellants Explos. Pyrotech. 2015,
- 34 Gray, I. I. I.; Blumenthal, G.; Trujillo, W.; Carpenter, C.; Zh, R. J. Phys. IV 1997, 7, 523.
- 35 Chen, W.; Zhang, B.; Forrestal, M. J. Exp. Mech. 1999, 39, 81.
- 36 Davies, E. D. H.; Hunter, S. C. J. Mech. Phys. Solids 1963, 11, 155.
- 37 Taylor, W.; Weale, A. Proc. R. Soc. Lond. A 1932, 138, 92.
- 38 Taylor, W.; Weale, A. Trans. Faraday Soc. 1938, 34, 995.
- 39 Song, B.; Chen, W. Exp. Mech. 2004, 44, 300.
- 40 Kolsky, H. Proc. Phys. Soc. Lond. 1949, 62, 676.
- 41 Yu, P.; Yao, X.; Han, Q.; Zang, S.; Gu, Y. Polymer 2014, 55, 6577.
Citing Literature
June 15, 2016