Sterically hindered (pyridyl)benzamidine palladium(II) complexes: Syntheses, structural studies, and applications as catalysts in the methoxycarbonylation of olefins
Saphan O. Akiri
School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorCorresponding Author
Stephen O. Ojwach
School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Correspondence
Stephen O. Ojwach, School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
Email: [email protected]
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Resources (lead), Supervision (lead)
Search for more papers by this authorSaphan O. Akiri
School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorCorresponding Author
Stephen O. Ojwach
School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Correspondence
Stephen O. Ojwach, School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
Email: [email protected]
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Resources (lead), Supervision (lead)
Search for more papers by this authorFunding information: University of KwaZulu-Natal; DST-NRF (South Africa) Centre of Excellence in Catalysis
Abstract
Reactions of ligands (E)-N′-(2,6-diisopropylphenyl)-N-(4-methylpyridin-2-yl)benzimidamide (L1), (E)-N′-(2,6-diisopropylphenyl)-N-(6-methylpyridin-2-yl)benzimidamide (L2), (E)-N′-(2,6-dimethylphenyl)-N-(6-methylpyridin-2-yl)benzimidamide (L3), (E)-N′-(2,6-dimethylphenyl)-N-(4-methylpyridin-2-yl)benzimidamide (L4), and (E)-N-(6-methylpyridin-2-yl)-N′-phenylbenzimidamide (L5) with [Pd(NCMe)2Cl2] furnished the corresponding palladium(II) precatalysts (Pd1–Pd5), in good yields. Molecular structures of Pd2 and Pd3 revealed that the ligands coordinate in a N^N bidentate mode to afford square planar compounds. Activation of the palladium(II) complexes with para-tolyl sulfonic acid (PTSA) afforded active catalysts in the methoxycarbonylation of a number of alkene. The resultant catalytic activities were controlled by the both the complex structure and alkene substrate. While aliphatic substrates favored the formation of linear esters (>70%), styrene substrate resulted in the formation of predominantly branched esters of up to 91%.
CONFLICT OF INTEREST
The authors declare no known conflicts of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
aoc6439-sup-0001-Supplementary material Akiri SO.docxWord 2007 document , 3.6 MB |
Table S1: FTIR spectroscopy and mass spectral data for ligands and complexes Table S2: Initial screening of the behaviour of pyridyl benzamidine palladium (II) complexes in methoxycarbonylation of 1-hexenea. Figure S1: 1H NMR spectrum of ligand L1 showing the expected peaks (N-H peak et 13.93) Figure S2: 1H NMR spectrum of ligand L2 showing the expected peaks (N-H peak at 13.87). Figure S3: 1H NMR spectrum of ligand L3 showing the expected peaks. Figure S4: 1H NMR spectrum of ligand L4 showing the expected peaks Figure S5: 1H NMR spectrum of ligand L5 showing the expected peaks Figure S6: 1H NMR spectrum of complex Pd1 showing the expected peaks. Figure S7: 1H NMR spectrum of complex Pd2 showing the expected peaks. Figure S8: 1H NMR spectrum of complex Pd3 showing the expected peaks Figure S9: 1H NMR spectrum of complex Pd4 showing the expected peaks. Figure S10: 1H NMR spectrum of complex Pd5 showing the expected peaks Figure S11: 13C NMR spectrum of ligand L1 showing the expected peak. Figure S12: 13C NMR spectrum of ligand L2 showing the expected peaks Figure S13: 13C NMR spectrum of ligand L3 showing the expected peaks Figure S14: 13C NMR spectrum of ligand L4 showing the expected peaks. Figure S15: 13C NMR spectrum of ligand L5 showing the expected peaks. Figure S16: 13C NMR spectrum of complex Pd1 showing the expected peaks. Figure S17: 13C NMR spectrum of complex Pd2 showing the expected peaks. Figure S18: 13C NMR spectrum of complex Pd3 showing the expected peaks. Figure S19: 13C NMR spectrum of complex Pd4 showing the expected peaks. Figure S20: 13C NMR spectrum of complex Pd5 showing the expected peaks. Figure S21: An FT-IR spectrum of ligand L1 showing imine peak at 1618 cm−1 Figure S22: An FT-IR spectrum of ligand L2 showing imine peak at 1637 cm−1 Figure S23: An FT-IR spectrum of ligand L3 showing imine peak at 1642 cm−1 Figure S24: An FT-IR spectrum of ligand L4 showing imine peak at 1647 cm−1 Figure S25: An FT-IR spectrum of ligand L5 showing imine peak at 1658 cm−1 Figure S26: An FT-IR spectrum of complex Pd1 showing imine peak at 1626 cm−1 Figure S27: An FT-IR spectrum of complex Pd2 showing imine peak at 1604 cm−1 Figure S28: An FT-IR spectrum of complex Pd3 showing imine peak at 1607 cm−1 Figure S29: An FT-IR spectrum of complex Pd4 showing imine peak at 1610 cm−1 Figure S30: An FT-IR spectrum of complex Pd5 showing imine peak at 1619 cm−1 Figure S31: A mass spectra of ligand L1 (mass = 371.24) showing (ESI-MS (m/z) = 372([M + H]+). Figure S32: A mass spectra of ligand L2 (mass = 371.24) showing (ESI-MS (m/z) = 372([M + H]+). Figure S33: A mass spectra of ligand L3 (mass = 315.17) showing (ESI-MS (m/z) = 316([M + H]+). Figure S34: A mass spectra of ligand L4 (mass = 315.17) showing (ESI-MS (m/z) = 316([M + H]+). Figure S35: A mass spectra of ligand L5 (mass = 287.14) showing (ESI-MS (m/z) = 288([M + H]+). Figure S36: A mass spectra of complex Pd1 (mass = 547.07) showing (ESI-MS (m/z) = 548 ([M + H]+). Figure S37: A mass spectra of complex Pd2 (mass = 547.07) showing (ESI-MS (m/z) = 548 ([M + H]+). Figure S38: A mass spectra of complex Pd3 (mass = 491.01) showing (ESI-MS (m/z) = 492([M + H]+). Figure S39: A mass spectra of complex Pd4 (mass = 491.01) showing (ESI-MS (m/z) = 492([M + H]+). Figure S40: A mass spectra of complex Pd5 (mass = 462.98) showing (ESI-MS (m/z) = 417([M-CH3Cl]+). Figure S41: GC and GC–Ms spectra of products identified as branched (methyl 2-methylhexanoate) and linear (methyl heptanoate) esters using ethyl benzene as internal standard in the methoxycarbonylation of 1-hexene. Figure S42: 1H NMR of complex Pd5 in the presence of PTSA and PPh3 (Pd:PTSA ratios of 1:30 & 1:40) showing the stability of the complex Pd5 at low acid concentration (Pd:PTSA ratio of 1:30) and possible ligand dissociation at high acid concentations (Pd:PTSA ratio of 1:40). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 2010, 330, 1222.
- 2F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613.
- 3C. Bolm, M. Beller, Transition Metals for Organic Synthesis, Wiley-VCH, Weinheim 2004.
- 4M. Sperrle, G. Consiglio, Chem. Ber. 1997, 130, 1557.
- 5A. F. Mason, G. W. Coates, J. Am. Chem. Soc. 2004, 126, 16326.
- 6F. Marchetti, G. Pampaloni, Y. Patil, A. M. R. Galletti, F. Renili, S. Zacchini, Organometallics 2011, 30, 1682.
- 7T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, D. A. Bansleben, Science 2000, 287, 460.
- 8A. A. Khandar, K. Nejati, Z. Rezvani, Molecules 2005, 10, 302.
- 9N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- 10R. Waymouth, P. Pino, J. Am. Chem. Soc. 1990, 112, 4911.
- 11S. O. Akiri, N. L. Ngcobo, S. O. Ojwach, Catal. Lett. 2020, 150, 1.
- 12R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413.
- 13P. Kalck, M. Urrutigoity, Inorg. Chim. Acta 2015, 431, 110.
- 14B. Liu, F. Hu, B.-F. Shi, ACS Catal. 2015, 5, 1863.
- 15A. Brennführer, H. Neumann, M. Beller, ChemCatChem 2009, 1, 28.
- 16J. Liu, K. Dong, R. Franke, H. Neumann, R. Jackstell, M. Beller, Chem. Commun. 2018, 54, 12238.
- 17I. E. Nifant'ev, N. T. Sevostyanova, S. A. Batashev, A. A. Vinogradov, A. A. Vinogradov, A. V. Churakov, P. V. Ivchenko, Appl. Catal. A-Gen. 2019, 581, 123.
- 18C. Arderne, C. W. Holzapfel, T. Bredenkamp, ChemCatChem 2016, 8, 1084.
- 19K. Dong, R. Sang, X. Fang, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell, M. Beller, Am. Ethnol. 2017, 129, 5351.
- 20A. J. Rucklidge, G. E. Morris, A. M. Slawin, D. J. Cole-Hamilton, Helv. Chim. Acta 2006, 89, 1783.
- 21Z. Zulu, G. S. Nyamato, T. A. Tshabalala, S. O. Ojwach, Inorg. Chim. Acta 2020, 501, 119270.
- 22M. G. Alam, T. A. Tshabalala, S. O. Ojwach, J. Surfactants Deterg. 2017, 20, 75.
- 23T. A. Tshabalala, S. O. Ojwach, Transition Met. Chem. 2018, 43, 339.
- 24M. B. Ibrahim, R. Suleiman, B. El Ali, J. Coord. Chem. 2016, 69, 1346.
- 25S. Zulu, M. G. Alam, S. O. Ojwach, M. P. Akerman, Appl. Organomet. Chem. 2019, 33, e5175.
- 26C. Bianchini, H. M. Lee, G. Mantovani, A. Meli, W. Oberhauser, New J. Chem. 2002, 26, 387.
- 27N. L. Ngcobo, S. O. Akiri, A. O. Ogweno, S. O. Ojwach, Polyhedron 2021, 203, 115243.
- 28G. Abarca, K. Brown, S. A. Moya, J. C. Bayón, P. A. Aguirre, Catal. Lett. 2015, 145, 1396.
- 29P. A. Aguirre, C. A. Lagos, S. A. Moya, C. Zúñiga, C. Vera-Oyarce, E. Sola, G. Peris, J. C. Bayón, Dalton Trans. 2007, 5419.
- 30S. O. Akiri, S. O. Ojwach, Inorg. Chim. Acta 2019, 489, 236.
- 31S. O. Akiri, S. O. Ojwach, Catalysts 2019, 9, 143.
- 32K. Kumar, J. Darkwa, Polyhedron 2017, 138, 249.
- 33R. T. Boeré, V. Klassen, G. Wolmershäuser, J. Chem. Soc., Dalton Trans. 1998, 4147.
- 34A. M. Winter, K. Eichele, H.-G. Mack, S. Potuznik, H. A. Mayer, W. C. Kaska, J. Organomet. Chem. 2003, 682, 149.
- 35F.-S. Liu, H.-Y. Gao, K.-M. Song, L. Zhang, F.-M. Zhu, Q. Wu, Polyhedron 2009, 28, 1386.
- 36Y. T. Huang, X. Tang, Y. Yang, D. S. Shen, C. Tan, F. S. Liu, Appl. Organomet. Chem. 2012, 26, 701.
- 37A. Tognon, V. Rosar, N. Demitri, T. Montini, F. Felluga, B. Milani, Inorg. Chim. Acta 2015, 431, 206.
- 38Y. Lai, Z. Zong, Y. Tang, W. Mo, N. Sun, B. Hu, Z. Shen, L. Jin, W.-h. Sun, X. Hu, Beilstein J. Org. Chem. 2017, 13, 213.
- 39I. del Río, C. Claver, P. W. van Leeuwen, Eur. J. Inorg. Chem. 2001, 2001, 2719.
- 40G. Cavinato, L. Toniolo, Molecules 2014, 19, 15116.
- 41G. Kiss, Chem. Rev. 2001, 101, 3435.
- 42C.-M. Tang, X.-L. Li, G.-Y. Wang, Korean J. Chem. Eng. 2012, 29, 1700.
- 43K. Dong, R. Sang, Z. Wei, J. Liu, R. Dühren, A. Spannenberg, H. Jiao, H. Neumann, R. Jackstell, R. Franke, Chem. Sci. 2018, 9, 2510.
- 44A. F. Schmidt, A. Al-Halaiqa, V. V. Smirnov, J. Mol. Catal. A: Chem. 2006, 250, 131.
- 45H. A. Ghaly, A. S. El-Kalliny, T. A. Gad-Allah, N. E. A. El-Sattar, E. R. Souaya, RSC Adv. 2017, 7, 12726.
- 46T. Iwasawa, M. Tokunaga, Y. Obora, Y. Tsuji, J. Am. Chem. Soc. 2004, 126, 6554.
- 47C. Arderne, L. A. Guzei, C. W. Holzapfel, T. Bredenkamp, ChemCatChem 2016, 8, 1084.
- 48B. Hendriksen, J. Frenken, Phys. Rev. Lett. 2002, 89, 046101.
- 49R. E. Harmon, S. Gupta, D. Brown, Chem. Rev. 1973, 73, 21.
- 50H. S. Yun, K. H. Lee, J. S. Lee, J. Mol. Catal. A: Chem. 1995, 95, 11.
- 51T. A. Tshabalala, S. O. Ojwach, M. A. Akerman, J. Mol. Catal. A: Chem. 2015, 406, 178.
- 52F. Stempfle, D. Quinzler, I. Heckler, S. Mecking, Macromolecules 2011, 44, 4159.
- 53S. O. Akiri, S. O. Ojwach, J. Organomet. Chem. 2021, 942, 121812.
- 54M. Rosales, I. Pacheco, J. Medina, J. Fernández, Á. González, R. Izquierdo, L. G. Melean, P. J. Baricelli, Catal. Lett. 2014, 144, 1717.
- 55J. A. Widegren, R. G. Finke, J. Mol. Catal. A: Chem. 2003, 198, 317.
- 56P. Santra, P. Sagar, J. Mol. Catal. A: Chem. 2003, 197, 37.
- 57R. Pruvost, J. Boulanger, B. Léger, A. Ponchel, E. Monflier, M. Ibert, A. Mortreux, T. Chenal, M. Sauthier, ChemSusChem 2014, 7, 3157.
- 58H. Schulz, M. Claeys, Appl. Catal., a 1999, 186, 71.
- 59E. Guiu, M. Caporali, B. Munoz, C. Müller, M. Lutz, A. L. Spek, C. Claver, P. W. van Leeuwen, Organometallics 2006, 25, 3102.