CuI-catalyzed, one-pot synthesis of 3-aminobenzofurans in deep eutectic solvents
Bahareh Abtahi
Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Search for more papers by this authorCorresponding Author
Hossein Tavakol
Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Correspondence
Hossein Tavakol, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: [email protected]
Search for more papers by this authorBahareh Abtahi
Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Search for more papers by this authorCorresponding Author
Hossein Tavakol
Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Correspondence
Hossein Tavakol, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: [email protected]
Search for more papers by this authorFunding information: Isfahan University of technology
Abstract
An environmentally friendly method is presented here for the synthesis of various benzofuran derivatives using CuI catalyst. In this line, a one-pot, 3-component reaction of alkynes, different aldehydes, and amines is employed in choline chloride-ethylene glycol deep eutectic solvent as an available, cheap, and green media. The employed method includes easy workup and good yields. In this work, 12 different benzofuran derivatives have been prepared in 7 h at 80°C.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
aoc6433-sup-0001-Supporting information-r.docxWord 2007 document , 1.7 MB |
Data S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1G. Purohit, U. Chinna Rajesh, D. S. Rawat, ACS Sustain. Chem. Eng. 2017, 5(8), 6466.
- 2D. H. Silva, F. C. Pereira, M. V. Zanoni, M. Yoshida, Phytochemistry 2001, 57(3), 437.
- 3B. L. Flynn, E. Hamel, M. K. Jung, J. Med. Chem. 2002, 45(12), 2670.
- 4K. M. Dawood, H. Abdel-Gawad, E. A. Rageb, M. Ellithey, H. A. Mohamed, Bioorg. Med. Chem. 2006, 14(11), 3672.
- 5H. Li, J. Liu, B. Yan, Y. Li, Tetrahedron Lett. 2009, 50(20), 2353.
- 6R. V. Nguyen, C. J. Li, Synlett 2008, 2008(12), 1897.
- 7H. Khanam, Eur. J. Med. Chem. 2015, 97, 483.
- 8M. Asif, J. Anal. Pharm. Res. 2016, 3(2), 50.
10.15406/japlr.2016.03.00050 Google Scholar
- 9T. L. Boehm, H. H. Showalter, J. Org. Chem 1996, 61(19), 6498.
- 10J. B. Wright, J. Org. Chem 1960, 25(11), 1867.
- 11J. R. Wang, K. Manabe, J. Org. Chem 2010, 75(15), 5340.
- 12N. Takeda, O. Miyata, T. Naito, Eur. J. Org. Chem. 2007, 2007(9), 1491.
- 13L. Zhou, Y. Shi, Q. Xiao, Y. Liu, F. Ye, Y. Zhang, J. Wang, Org. Lett. 2011, 13(5), 968.
- 14T. J. Maimone, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132(29), 9990.
- 15C. Wei, Z. Li, C. J. Li, Synlett 2004, 2004(09), 1472.
- 16B. V. Rokade, J. Barker, P. J. Guiry, Chem. Soc. Rev. 2019, 48(18), 4766.
- 17I. Jesin, G. C. Nandi, Eur. J. Org. Chem. 2019, 2019(16), 2704.
- 18V. A. Peshkov, O. P. Pereshivko, E. V. van der Eycken, Chem. Soc. Rev. 2012, 41(10), 3790.
- 19T. Dang-Bao, C. Pradel, I. Favier, M. Gómez, Adv. Synth. Catal. 2017, 359(16), 2832.
- 20H. Sharghi, P. Shiri, M. Aberi, Synthesis 2014, 46(18), 2489.
- 21N. O. Mahmoodi, M. Jazayri, Synth. Commun. 2001, 31(10), 1467.
- 22X. Zhang, D. Li, X. Jia, J. Wang, X. Fan, Catal. Commun. 2011, 12(9), 839.
- 23S. Sadjadi, M. M. Heravi, M. Malmir, Appl. Organomet. Chem. 2018, 32(2), e4029.
- 24J. R. Cammarata, R. Rivera, F. Fuentes, Y. Otero, E. Ocando-Mavárez, A. Arce, J.-M. Garcia, Tetrahedron Lett. 2017, 58, 4078.
- 25R. A. Sheldon, Chem. Soc. Rev. 2012, 41, 1437.
- 26Q. Zhang, K. D. O. Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 2012, 41, 7108.
- 27S. Khandelwal, Y. K. Tailor, M. Kumar, J. Mol. Liq. 2016, 215, 345.
- 28A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, ChemCommm. 2003, 70.
- 29N. Azizi, T. S. Ahooie, M.-M. Hashemi, J. Mol. Liq. 2017, 246, 221.
- 30H. Tavakol, F. Keshavarzipour, Appl. Organomet. Chem. 2017, 31(11), e3811.
- 31D. Shahabi, H. Tavakol, J. Iran. Chem. Soc. 2017, 14(1), 135.
- 32B. Abtahi, H. Tavakol, Appl. Organomet. Chem. 2020, 34(11), e5895.
- 33B. Abtahi, H. Tavakol, ChemistrySelect 2020, 5(40), 12582.
- 34M. A. Ranjbari, H. Tavakol, J. Org. Chem 2021, 86(6), 4756.
- 35P. de Vreese, N. R. Brooks, K. van Hecke, L. van Meervelt, E. Matthijs, K. Binnemans, R. van Deun, Inorg. Chem. 2012, 51, 4972.
- 36J. Cao, Y. Shang, B. Qi, X. Sun, L. Zhang, H. Liu, H. Zhang, X. Zhou, RSC Adv. 2015, 5, 9993.
- 37J. Cao, B. Qi, J. Liu, Y. Shang, H. Liu, W. Wang, X. Zhou, RSC Adv. 2016, 6, 21612.
- 38P. Liu, J. W. Hao, L. P. Mo, Z. H. Zhang, RSC Adv. 2015, 5, 48675.