Highly effective selectively removal of carcinogenic dyes and iodine adsorption and release via a metal–organic framework based on multiple helical chains
Xin Yu
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead)
Search for more papers by this authorMengfan Liu
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorLijuan Feng
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Conceptualization (supporting), Resources (supporting), Supervision (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Shuo Yao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Correspondence
Shuo Yao, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
Email: [email protected]
Yunling Liu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (equal), Validation (equal)
Search for more papers by this authorCorresponding Author
Yunling Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
Correspondence
Shuo Yao, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
Email: [email protected]
Yunling Liu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Email: [email protected]
Contribution: Conceptualization (equal), Supervision (lead), Validation (lead)
Search for more papers by this authorXin Yu
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead)
Search for more papers by this authorMengfan Liu
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorLijuan Feng
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Contribution: Conceptualization (supporting), Resources (supporting), Supervision (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Shuo Yao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
Correspondence
Shuo Yao, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
Email: [email protected]
Yunling Liu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (equal), Validation (equal)
Search for more papers by this authorCorresponding Author
Yunling Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
Correspondence
Shuo Yao, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
Email: [email protected]
Yunling Liu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Email: [email protected]
Contribution: Conceptualization (equal), Supervision (lead), Validation (lead)
Search for more papers by this authorFunding information: Shandong Province Natural Foundation of China, Grant/Award Number: ZR2019BB033; Fundamental Research Funds for the Central Universities of Ocean University of China, Grant/Award Number: 201813031; National Key Research and Development Program of China, Grant/Award Number: 2016YFB0701100; Higher Education Discipline Innovation Project, Grant/Award Numbers: B17020, D20015; National Natural Science Foundation of China, Grant/Award Numbers: 21771078, 21621001
Abstract
A novel porous metal–organic framework Cu-BCPPy based on a desymmetrized heterofunctional ligand 3,5-di(4-carboxyphenyl)pyridine has been successfully synthesized under solvothermal conditions. The framework possesses two sizes of 2D straight channels, which are constructed by one pair and three pairs of helixes, respectively. The distortion of the ligand leads to the structure exhibiting a new type of (3,6)-connected topology. According to the structural characteristic, Cu-BCPPy can effectively adsorb large carcinogenic organic dyes sudan III (SD III) and direct black 38 (DB 38) but exclude small molecular dyes. Hence, Cu-BCPPy exhibits effective and selective adsorption performance for the carcinogenic dye DB 38 on the equal proportional mixture dyes methyl orange (MO) and DB 38, fluorescein and DB 38, and basic red 2 (BR 2) and DB 38 with different sizes. In addition, Cu-BCPPy can be also provided with the characteristic of high iodine adsorption and release, which indicates that it is a promising candidate material for selectively adsorption and separation of many substances.
CONFLICT OF INTEREST
There are no conflicts to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
aoc6420-sup-0001-ESI-revised.docxWord 2007 document , 5 MB |
Figure S1. The PXRD patterns of simulated, as-synthesized, EtOH-exchanged and after the dyes and iodine adsorption for Cu-BCPPy. Figure S2. Topological features of Cu-BCPPy displayed by tiles and face symbols. Figure S3. TGA curve for the as-synthesized and EtOH-exchanged Cu-BCPPy. Figure S4. Photographs of the dyes adsorbed crystals of Cu-BCPPy. Figure S5. FT-IR spectra of ligand H2BCPy, Cu-BCPPy and samples adsorbed DB 38 and SD III. Figure S6. The first-order derivative curves of adsorption amount (Qe) with time for SD III and DB 38. Figure S7. Langmuir and Freundlich isotherms fitting plots for adsorption of SD III (a) and DB 38 (b). Figure S8. UV-vis spectra of MO (a), Fluorescein (b) and BR 2 (c) adsorption by Cu-BCPPy. Figure S9. (a) UV-vis spectra of iodine in cyclohexane. (b) Calibration plot of standard iodine by UV-vis spectra. Figure S10. (a) UV-vis spectra of iodine in ethanol. (b) Calibration plot of standard iodine by UV-vis spectra. Table S1. Crystal data and structure refinements for Cu-BCPPy. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1V. K. Sharma, M. Feng, J. Hazard. Mater. 2019, 372, 3.
- 2Y. Yan, C. Li, Y. Wu, J. Gao, Q. Zhang, J. Mater. Chem. A 2020, 8, 15245.
- 3L. Joseph, B.-M. Jun, M. Jang, C. M. Park, J. C. Muñoz-Senmache, A. J. Hernández-Maldonado, A. Heyden, M. Yu, Y. Yoon, Chem. Eng. J. 2019, 369, 928.
- 4N. A. Khan, S. H. Jhung, J. Hazard. Mater. 2017, 325, 198.
- 5P. Kumar, A. Pournara, K.-H. Kim, V. Bansal, S. Rapti, M. J. Manos, Prog. Mater. Sci. 2017, 86, 25.
- 6C.-X. Yu, F.-L. Hu, J.-G. Song, J.-L. Zhang, S.-S. Liu, B.-X. Wang, H. Meng, L.-L. Liu, L.-F. Ma, Sens. Actuators B 2020, 310, 127819.
- 7N. A. Khan, Z. Hasan, S. H. Jhung, J. Hazard. Mater. 2013, 244–245, 444.
- 8B. Parmar, K. K. Bisht, G. Rajput, E. Suresh, Dalton Trans. 2021, 50, 3083.
- 9B. O. Okesola, D. K. Smith, Chem. Soc. Rev. 2016, 45, 4226.
- 10H. Li, K. Gao, B. Mo, Q. Meng, K. Li, J. Wu, H. Hou, Dalton Trans. 2021, 50, 3348.
- 11J. B. DeCoste, G. W. Peterson, Chem. Rev. 2014, 114, 5695.
- 12M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Adv. Colloid Interface Sci. 2014, 209, 172.
- 13 OEKO-TEX Standard 100, Edition 02, International Association for Research and Testing in the Field of Textile and Leather Ecology, Zurich, Switzerland 2020.
- 14M. Jia, J. Li, S. Che, L. Kan, G. Li, Y. Liu, Inorg. Chem. Front. 2019, 6, 1261.
- 15J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Chem. Soc. Rev. 2018, 47, 2322.
- 16M. Yadollahi, H. Hamadi, V. Nobakht, J. Hazard. Mater. 2020, 399, 122872.
- 17Y. H. Abdelmoaty, T. D. Tessema, F. A. Choudhury, O. M. El-Kadri, H. M. El-Kaderi, ACS Appl. Mater. Interfaces 2018, 10, 16049.
- 18W. Xie, D. Cui, S.-R. Zhang, Y.-H. Xu, D.-L. Jiang, Mater. Horiz. 2019, 6, 1571.
- 19A. Gogia, P. Das, S. K. Mandal, ACS Appl. Mater. Interfaces 2020, 12, 46107.
- 20M. Arici, T. Alp Arici, H. Demiral, M. Tas, O. Z. Yesilel, Dalton Trans. 2020, 49, 10824.
- 21M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Environ. Sci. Nano 2019, 6, 1006.
- 22X. Ma, Y. Chai, P. Li, B. Wang, Acc. Chem. Res. 2019, 52, 1461.
- 23D. Jiang, M. Chen, H. Wang, G. Zeng, D. Huang, M. Cheng, Y. Liu, W. Xue, Z. Wang, Coord. Chem. Rev. 2019, 380, 471.
- 24L. Zhang, J. S. Sun, F. Sun, P. Chen, J. Liu, G. Zhu, Chemistry 2019, 25, 3903.
- 25A. G. Slater, A. I. Cooper, Science 2015, 348, aaa8075.
- 26I. Ahmed, S. H. Jhung, Mater. Today 2014, 17, 136.
- 27M. I. Nandasiri, S. R. Jambovane, B. P. McGrail, H. T. Schaef, S. K. Nune, Coord. Chem. Rev. 2016, 311, 38.
- 28J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Chem. Soc. Rev. 2014, 43, 5594.
- 29C. Li, K. Wang, J. Li, Q. Zhang, ACS Materials Lett. 2020, 2, 779.
- 30Y. P. Wu, J. W. Tian, S. Liu, B. Li, J. Zhao, L. F. Ma, D. S. Li, Y. Q. Lan, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 12185.
- 31H. R. Fu, N. Wang, X. X. Wu, F. F. Li, Y. Zhao, L. F. Ma, M. Du, Adv. Optical Mater. 2020, 8, 2000330.
- 32J. Gao, M. He, Z. Y. Lee, W. Cao, W. W. Xiong, Y. Li, R. Ganguly, T. Wu, Q. Zhang, Dalton Trans. 2013, 42, 11367.
- 33X. Liu, B. Liu, J. F. Eubank, Y. Liu, Mater. Chem. Front. 2020, 4, 182.
- 34H. R. Fu, N. Wang, J. H. Qin, M. L. Han, L. F. Ma, F. Wang, Chem. Commun. 2018, 54, 11645.
- 35Y. Zhao, L. Wang, N.-N. Fan, M.-L. Han, G.-P. Yang, L.-F. Ma, Cryst. Growth Des. 2018, 18, 7114.
- 36J. H. Liu, Y. J. Qi, D. Zhao, H. H. Li, S. T. Zheng, Inorg. Chem. 2019, 58, 516.
- 37S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H. C. Zhou, Adv. Mater. 2018, 30, e1704303.
- 38M. Ding, X. Cai, H. L. Jiang, Chem. Sci. 2019, 10, 10209.
- 39M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 2019, 58, 15188.
- 40A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H. C. Zhou, Chem. Soc. Rev. 2018, 47, 8611.
- 41G. M. Sheldrick, SHELXTL-NT, Version 5.1, Bruker AXS Inc., Madison, WI 1997.
- 42V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 2014, 14, 3576.
- 43M. N. Ahamad, M. S. Khan, M. Shahid, M. Ahmad, Dalton Trans. 2020, 49, 14690.
- 44X. Liu, W. Gong, J. Luo, C. Zou, Y. Yang, S. Yang, Appl. Surf. Sci. 2016, 362, 517.
- 45L. Shi, L. Hu, J. Zheng, M. Zhang, J. Xu, J. Dispers. Sci. Technol. 2015, 37, 1226.
- 46Z. Wang, J.-H. Zhang, J.-J. Jiang, H.-P. Wang, Z.-W. Wei, X. Zhu, M. Pan, C.-Y. Su, J. Mater. Chem. A 2018, 6, 17698.
- 47Z. P. Qi, J. M. Yang, Y. S. Kang, F. Guo, W. Y. Sun, Dalton Trans. 2016, 45, 8753.
- 48S. Zhao, S. Li, Z. Zhao, Y. Su, Y. Long, Z. Zheng, D. Cui, Y. Liu, C. Wang, X. Zhang, Z. Zhang, Environ. Sci. Pollut. Res. Int. 2020, 27, 39186.
- 49G. I. Dzhardimalieva, R. K. Baimuratova, E. I. Knerelman, G. I. Davydova, S. E. Kudaibergenov, O. V. Kharissova, V. A. Zhinzhilo, I. E. Uflyand, Polymer 2020, 12, 1024.
- 50S. Yao, T. Xu, N. Zhao, L. Zhang, Q. Huo, Y. Liu, Dalton Trans. 2017, 46, 3332.
- 51M. Ş. A. Eren, H. Arslanoğlu, H. Çiftçi, J. Environ. Chem. Eng. 2020, 8, 104247.
- 52M. Dadashi Firouzjaei, F. Akbari Afkhami, M. Rabbani Esfahani, C. H. Turner, S. Nejati, J. Water Process Eng. 2020, 34, 101180.
- 53M. Saghian, S. Dehghanpour, M. Sharbatdaran, RSC Adv. 2020, 10, 9369.
- 54Y. Zhu, Y. M. Wang, S. Y. Zhao, P. Liu, C. Wei, Y. L. Wu, C. K. Xia, J. M. Xie, Inorg. Chem. 2014, 53, 7692.
- 55R. Kaur, A. Kaur, A. Umar, W. A. Anderson, S. K. Kansal, Mater. Res. Bull. 2019, 109, 124.
- 56W. G. Jin, W. Chen, P. H. Xu, X. W. Lin, X. C. Huang, G. H. Chen, F. Lu, X. M. Chen, Chemistry 2017, 23, 13058.
- 57A. Beheshti, E. S. Mousavi Fard, M. Kubicki, P. Mayer, C. T. Abrahams, S. E. Razatofighi, CrstEngComm 2019, 21, 251.
- 58Y. Gao, S.-Q. Deng, X. Jin, S.-L. Cai, S.-R. Zheng, W.-G. Zhang, Chem. Eng. J. 2019, 357, 129.
- 59Y. H. Luo, A. D. Xie, M. G. Hu, J. Wu, D. E. Zhang, Y. Q. Lan, Inorg. Chem. 2021, 60, 167.
- 60X. Guo, L. Kong, Y. Ruan, Z. Diao, K. Shih, M. Su, L. Hou, D. Chen, J. Colloid Interface Sci. 2020, 578, 500.
- 61F. Ahmadijokani, R. Mohammadkhani, S. Ahmadipouya, A. Shokrgozar, M. Rezakazemi, H. Molavi, T. M. Aminabhavi, M. Arjmand, Chem. Eng. J. 2020, 399, 125346.
- 62J. Yuan, J. Li, L. Kan, L. Zou, J. Zhao, D.-S. Li, G. Li, L. Zhang, Y. Liu, Cryst. Growth Des. 2018, 18, 5449.
- 63S. Yao, X. Sun, B. Liu, R. Krishna, G. Li, Q. Huo, Y. Liu, J. Mater. Chem. A 2016, 4, 15081.