A comparative study of catalytic activity on iron-based carbon nanostructured catalysts with Pd loading: Using the Box–Behnken design (BBD) method in the Suzuki–Miyaura coupling
Faezeh Moniriyan
Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Project administration (equal), Software (equal)
Search for more papers by this authorCorresponding Author
Seyyed Javad Sabounchei
Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
Correspondence
Seyyed Javad Sabounchei, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174, Iran.
Email: [email protected]; [email protected]
Contribution: Conceptualization (equal)
Search for more papers by this authorFaezeh Moniriyan
Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Project administration (equal), Software (equal)
Search for more papers by this authorCorresponding Author
Seyyed Javad Sabounchei
Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
Correspondence
Seyyed Javad Sabounchei, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174, Iran.
Email: [email protected]; [email protected]
Contribution: Conceptualization (equal)
Search for more papers by this authorFunding information: Bu-Ali-Sina University
Abstract
Highly dispersed palladium nanoparticles immobilized on surface-modified Fe3O4 NPs and magnetic carbon nanostructures (CNSs; carbon nanotubes/graphene oxide) were synthesized and applied as a recyclable and reusable nanocatalyst to achieve palladium (II)-catalyzed Suzuki–Miyaura reaction of arylboronic acid with aryl bromides. Carbon nanostructures with immobilized hydantoin (PH)-Pd complex display excellent stability, including a high performance at low catalyst loading. Magnetic separation prevents catalyst centrifuge or filtration and also contributes to practical techniques for recovery. Next, a response surface method based on a three-level Box–Behnken design was used, which involved three factors: catalyst loading, reaction time, and solvent. The Box–Behnken method was advantageous to parameters optimization for obtaining a yield, with high efficiency and accuracy. As a result of catalytic tests, the TONs and TOFs were calculated from all coupling reactions. The prepared nano-magnetic catalysts, after the catalysis reaction, can be easily recovered through the magnetic field. Evaluated catalytic performance indicates that these types of catalysts can function as effective recyclable catalysts at least five times without losing the initial level of catalytic activity.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
aoc6415-sup-0001-Supporting_information_R.docxWord 2007 document , 7 MB |
Data S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. Jakob, B. Milde, P. Ecorchard, C. Schreiner, H. Lang, J. Organomet. Chem. 2008, 693(26), 3821.
- 2G. Albano, L. A. Aronica, Eur. J. Org. Chem. 2017, 2017, 7204.
- 3L. Zhang, J. Wu, J. Am. Chem. Soc. 2008, 130(37), 12250.
- 4N. D. Patel, J. D. Sieber, S. Tcyrulnikov, B. J. Simmons, D. Rivalti, K. Duvvuri, Y. Zhang, D. A. Gao, K. R. Fandrick, N. Haddad, K. S. Lao, H. P. R. Mangunuru, S. Biswas, B. Qu, N. Grinberg, S. Pennino, H. Lee, J. J. Song, B. F. Gupton, N. K. Garg, M. C. Kozlowski, C. H. Senanayake, ACS Catal. 2018, 8(11), 10190.
- 5L. Yin, J. Liebscher, Chem. Rev. 2007, 107(1), 133.
- 6H. Song, Q. Zhu, X. Zheng, X. Chen, J. Mater. Chem. A 2015, 3(19), 10368.
- 7T. Baran, I. Sargin, M. Kaya, A. Menteş, T. Ceter, J. Colloid Interface Sci. 2017, 486, 194.
- 8J.-M. Yan, S.-J. Li, S.-S. Yi, B.-R. Wulan, W.-T. Zheng, Q. Jiang, Adv. Mater. 2018, 30(12), 1703038.
- 9S. Li, Y. Ping, J.-M. Yan, H.-L. Wang, M. Wu, Q. Jiang, J. Mater. Chem. A 2015, 3(28), 14535.
- 10S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29(33), 1700001.
- 11A. D. Moghadam, E. Omrani, P. L. Menezes, P. K. Rohatgi, Compos. Part B Eng. 2015, 77, 402.
- 12B. Qiu, M. Xing, J. Zhang, Chem. Soc. Rev. 2018, 47(6), 2165.
- 13R. Yadav, A. Subhash, N. Chemmenchery, B. Kandasubramanian, Ind. Eng. Chem. Res. 2018, 57(29), 9333.
- 14X. Fan, G. Zhang, F. Zhang, Chem. Soc. Rev. 2015, 44(10), 3023.
- 15G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.-B. Xu, R. S. Ruoff, H. Zhu, Chem. Soc. Rev. 2017, 46(15), 4417.
- 16S. Majumder, B. Satpati, S. Kumar, S. Banerjee, ACS Appl. Nano Mater. 2018, 1(8), 3945.
- 17M. He, G. Fei, Z. Zheng, Z. Cheng, Z. Wang, H. Xia, Langmuir 2019, 35(10), 3694.
- 18C. Bai, Q. Zhao, Y. Li, G. Zhang, F. Zhang, X. Fan, Catal. Lett. 2014, 144(9), 1617.
- 19N. Shang, S. Gao, C. Feng, H. Zhang, C. Wang, Z. Wang, RSC Adv. 2013, 3(44), 21863.
- 20S. J. Hoseini, M. Dehghani, H. Nasrabadi, Cat. Sci. Technol. 2014, 4(4), 1078.
- 21S. Mahouche Chergui, A. Ledebt, F. Mammeri, F. Herbst, B. Carbonnier, H. Ben Romdhane, M. Delamar, M. M. Chehimi, Langmuir 2010, 26(20), 16115.
- 22H. Veisi, A. Khazaei, M. Safaei, D. Kordestani, J. Mol. Catal. A: Chem. 2014, 382, 106.
- 23S. Iijima, P. M. Ajayan, T. Ichihashi, Phys. Rev. Lett. 1992, 69(21), 3100.
- 24J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan, J. Am. Chem. Soc. 1994, 116(17), 7935.
- 25X. Tan, W. Deng, M. Liu, Q. Zhang, Y. Wang, Chem. Commun. 2009, (46), 7179.
- 26M. Salavati-Niasari, M. Bazarganipour, Appl. Surf. Sci. 2008, 255(5), 2963.
- 27V. Georgakilas, V. Tzitzios, D. Gournis, D. Petridis, Chem. Mater. 2005, 17(7), 1613.
- 28H. Tan, W. Feng, P. Ji, Bioresour. Technol. 2012, 115, 172.
- 29E. V. Shevchenko, D. V. Talapin, C. B. Murray, S. O'Brien, J. Am. Chem. Soc. 2006, 128(11), 3620.
- 30F. X. Redl, K.-S. Cho, C. B. Murray, S. O'Brien, Nature 2003, 423(6943), 968.
- 31C. Bergemann, D. Müller-Schulte, J. Oster, L. à Brassard, A. S. Lübbe, J. Magn. Magn. Mater. 1999, 194(1–3), 45.
- 32M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2007, 2(3), 22.
- 33S. Sobhani, Z. Pakdin-Parizi, Appl. Catal. A. Gen. 2014, 479, 112.
- 34J. Liu, X. Peng, W. Sun, Y. Zhao, C. Xia, Org. Lett. 2008, 10(18), 3933.
- 35S. Ding, Y. Xing, M. Radosz, Y. Shen, Macromolecules 2006, 39(19), 6399.
- 36U. Laska, C. G. Frost, G. J. Price, P. K. Plucinski, J. Catal. 2009, 268(2), 318.
- 37A. Corma, H. Garcia, Adv. Synth. Catal. 2006, 348(12–13), 1391.
- 38J. A. Widegren, R. G. Finke, J. Mol. Catal. A: Chem. 2003, 198(1–2), 317.
- 39I. D. Inaloo, S. Majnooni, European J. Org. Chem. 2019, 2019(37), 6359.
- 40I. Dindarloo Inaloo, S. Majnooni, H. Eslahi, M. Esmaeilpour, Appl. Organomet. Chem. 2020, 34(8), e5662.
- 41I. D. Inaloo, S. Majnooni, H. Eslahi, M. Esmaeilpour, New J. Chem. 2020, 44(31), 13266.
- 42I. Dindarloo Inaloo, M. Esmaeilpour, S. Majnooni, A. Reza Oveisi, ChemCatChem 2020, 12(21), 5486.
- 43J. Ge, T. Huynh, Y. Hu, Y. Yin, Nano Lett. 2008, 8(3), 931.
- 44Z. Wang, P. Xiao, B. Shen, N. He, Colloids Surf. A Physicochem. Eng. Asp. 2006, 276(1–3), 116.
- 45Y.-C. Chang, D.-H. Chen, J. Hazard. Mater. 2009, 165(1–3), 664.
- 46D. K. Yi, S. S. Lee, J. Y. Ying, Chem. Mater. 2006, 18(10), 2459.
- 47O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez, R. M. Crooks, J. Am. Chem. Soc. 2006, 128(14), 4510.
- 48E. H. Rahim, F. S. Kamounah, J. Frederiksen, J. B. Christensen, Nano Lett. 2001, 1(9), 499.
- 49M. Pittelkow, K. Moth-Poulsen, U. Boas, J. B. Christensen, Langmuir 2003, 19(18), 7682.
- 50A. Baeyer, Justus Liebigs Ann. Chem. 1861, 117(2), 178.
10.1002/jlac.18611170204 Google Scholar
- 51E. Ware, Chem. Rev. 1950, 46(3), 403.
- 52P. E. Allegretti, M. de las Mercedes Schiavoni, C. Guzmán, A. Ponzinibbio, J. J. P. Furlong, Eur. J. Mass Spectrom. 2007, 13(4), 291.
- 53S. D. Worley, Y. Chen, Biocidal polystyrene hydantoin particles, 2005.
- 54J. W. Hanson, N. C. Myrianthopoulos, M. A. S. Harvey, D. W. Smith, J. Pediatr. 1976, 89(4), 662.
- 55J. Safari, L. Javadian, C. R. Chim. 2013, 16(12), 1165.
- 56T. Baran, N. Yılmaz Baran, A. Menteş, Appl. Organomet. Chem. 2018, 32(2), e4075.
- 57T. Baran, N. Yımaz Baran, A. Menteş, Appl. Organomet. Chem. 2018, 32(2), e4076.
- 58T. Baran, I. Sargin, M. Kaya, A. Menteş, J. Mol. Catal. A: Chem. 2016, 420, 216.
- 59T. Baran, Int. J. Biol. Macromol. 2019, 127, 232.
- 60S. Verma, Y. Lan, R. Gokhale, D. J. Burgess, Int. J. Pharm. 2009, 377(1–2), 185.
- 61G. D. Bowden, B. J. Pichler, A. Maurer, Sci. Rep. 2019, 9(1), 1.
- 62M. Kim, C. K. Hong, S. Choe, S. E. Shim, J. Polym. Sci. Part A Polym. Chem. 2007, 45(19), 4413.
- 63R. Dañová, R. Olejnik, P. Slobodian, J. Matyas, Polymers (Basel) 2020, 12(3), 713.
- 64Y. Yuan, J. Chen, Nanomaterials 2016, 6(3), 36.
- 65Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, J. Magn. Magn. Mater. 2011, 323(7), 1006.
- 66M. Qamar, M. Muneer, Desalination 2009, 249(2), 535.
- 67F. Najafi, M. Rajabi, Int. Nano Lett. 2015, 5(4), 187.
- 68M. S. Polyakov, T. V. Basova, Макрогетероциклы 2017, 10(1), 31.
- 69M. B. Ibrahim, B. El Ali, M. Fettouhi, L. Ouahab, Appl. Organomet. Chem. 2015, 29(6), 400.
- 70D. Das, R. Thakur, A. K. Pradhan, J. Electrostat. 2012, 70(6), 469.
- 71Y. Yin, J. Wang, Energy Fuel 2016, 30(5), 4096.
- 72V. Kandathil, A. Siddiqa, A. Patra, B. Kulkarni, M. Kempasiddaiah, B. S. Sasidhar, S. A. Patil, C. S. Rout, S. A. Patil, Appl. Organomet. Chem. 2020, 34(11), e5924.
- 73A. Zarnegaryan, Z. Dehbanipour, D. Elhamifar, Polyhedron 2019, 170, 530.
- 74M. Gómez-Martínez, E. Buxaderas, I. M. Pastor, D. A. Alonso, J. Mol. Catal. A: Chem. 2015, 404, 1.
- 75A. R. Hajipour, M. Kalantari Tarrari, S. Jajarmi, Appl. Organomet. Chem. 2018, 32(3), e4171.
- 76Q. Xu, W.-L. Duan, Z.-Y. Lei, Z.-B. Zhu, M. Shi, Tetrahedron 2005, 61(47), 11225.
- 77N. Shang, C. Feng, H. Zhang, S. Gao, R. Tang, C. Wang, Z. Wang, Cat. Com. 2013, 40, 111.
- 78M. Nasrollahzadeh, S. M. Sajadi, M. Maham, J. Mol. Catal. A: Chem. 2015, 396, 297.
- 79L. Wang, C. Cai, J. Mol. Catal. A: Chem. 2009, 306(1–2), 97.
- 80S. Bhunia, R. Sen, S. Koner, Inorg. Chim. Acta 2010, 363(14), 3993.
- 81T. Baran, Catal. Lett. 2019, 149(6), 1496.
- 82T. Baran, Catal. Lett. 2019, 149(6), 1721.
- 83J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, Mater. Sci. Eng. A 2007, 464(1–2), 151.
- 84W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80(6), 1339.
- 85W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26(1), 62.
- 86H. Moghanian, A. Mobinikhaledi, A. G. Blackman, E. Sarough-Farahani, RSC Adv. 2014, 4(54), 28176.
- 87M. W. Eknoian, T. R. Webb, S. D. Worley, A. Braswell, J. Hadley, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, 55(3), 405.
10.1107/S0108270198014528 Google Scholar