Hydroxyl-Promoted C─C Coupling for Selective Methane Conversion into Ethane on Cerium Oxide Photocatalyst
Dr. Lei Luo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Rong Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorZongxu Wu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorDr. Yejun Xiao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P.R. China
Search for more papers by this authorJiangnan Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorProf. Zhaochi Feng
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Fuxiang Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
E-mail: [email protected]
Search for more papers by this authorDr. Lei Luo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Rong Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorZongxu Wu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorDr. Yejun Xiao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P.R. China
Search for more papers by this authorJiangnan Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorProf. Zhaochi Feng
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Fuxiang Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Converting methane into high-value chemicals under mild conditions offers substantial environmental and energy benefits but is challenged by the difficulty of activating C─H bonds and preventing over-oxidation. In this study, the pivotal role of hydroxyl-rich surfaces on noble-metal-free photocatalysts is demonstrated in directing selective C─C coupling of methane. These surface hydroxyls not only enhance methane chemisorption and improve charge separation, but also promote favorable interactions with molecular oxygen, collectively boosting catalytic performance. Furthermore, the hydroxyl groups lower the energy barrier for ethane formation while suppressing its over-oxidation to CO2, resulting in significantly improved selectivity. Under ambient conditions in a flow-reactor system, the catalyst achieves a continuous ethane production rate of 187 µmol·g−1·h−1 with approximately 97% selectivity over an extended operation period (>200 h), surpassing previous noble-metal-free photocatalytic systems. This work provides critical insights into the role of hydroxyl-modified local environment in methane valorization, paving the way for the development of sustainable and efficient catalytic systems.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202510032-sup-0001-SuppMat.docx4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. J. Freakley, N. Dimitratos, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Acc. Chem. Res. 2021, 54, 2614–2623.
- 2A. Blankenship, M. Artsiusheuski, V. Sushkevich, J. A. van Bokhoven, Nat. Catal. 2023, 6, 748–762.
- 3F. Nkinahamira, R. Yang, R. Zhu, J. Zhang, Z. Ren, S. Sun, H. Xiong, Z. Zeng, Adv. Sci. 2023, 10, 2204566.
- 4P. Schwach, X. Pan, X. Bao, Chem. Rev. 2017, 117, 8497–8520.
- 5X. Li, C. Li, Y. Xu, Q. Liu, M. Bahri, L. Zhang, N. D. Browning, A. J. Cowan, J. Tang, Nat. Energy 2023, 8, 1013–1022.
- 6H. Zhang, P. Sun, X. Fei, X. Wu, Z. Huang, W. Zhong, Q. Gong, Y. Zheng, Q. Zhang, S. Xie, G. Fu, Y. Wang, Nat. Commun. 2024, 15, 4453.
- 7T. H. Nguyen, E. D. Park, S. Yu, ACS Energy Lett. 2024, 9, 538–546.
- 8Y. Jiang, Y. Fan, S. Li, Z. Tang, CCS Chemistry 2023, 5, 30–54.
- 9N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science 2017, 358, 223.
- 10H. Song, X. Meng, Z.-J. Wang, H. Liu, J. Ye, Joule 2019, 3, 1606.
- 11C. He, L. Shang, H. Zhu, L. Yu, L. Wang, J. Zhang, J. Am. Chem. Soc. 2024, 146, 11968–11977.
- 12M. Ishimaru, F. Amano, C. Akamoto, S. Yamazoe, J. Catal. 2021, 397, 192–200.
- 13Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, F.-S. Xiao, Science 2020, 367, 193–197.
- 14L. Li, X. Shi, L. Liu, Y. Tu, Y. Liu, Y. Zhang, H. B. Yang, S. Dou, B. Liu, Small 2025, 21, 2500835.
- 15Y. Chen, Y. Zhao, D. Liu, G. Wang, W. Jiang, S. Liu, W. Zhang, Y. Li, Z. Ma, T. Shao, H. Liu, X. Li, Z. Tang, C. Gao, Y. Xiong, J. Am. Chem. Soc. 2024, 146, 2465–2473.
- 16W. Zhang, D. Xi, Y. Chen, A. Chen, Y. Jiang, H. Liu, Z. Zhou, H. Zhang, Z. Liu, R. Long, Y. Xiong, Nat. Commun. 2023, 14, 3047.
- 17Y. Fan, Y. Jiang, H. Lin, J. Li, Y. Xie, A. Chen, S. Li, D. Han, L. Niu, Z. Tang, Nat. Commun. 2024, 15, 4679.
- 18C. B. Musgrave, K. Olsen, N. S. Liebov, J. T. Groves, W. A. Goddard, T. B. Gunnoe, ACS Catal. 2023, 13, 6382–6395.
- 19X. Wu, H. Zhang, S. Xie, Y. Wang, Chem. Catalysis 2023, 3, 100437.
- 20Q. Li, Y. Ouyang, H. Li, L. Wang, J. Zeng, Angew. Chem. Int. Ed. 2022, 61, e202108069.
- 21M. Selim Arif Sher Shah, C. Oh, H. Park, Y. J. Hwang, M. Ma, J. H. Park, Adv. Sci. 2020, 7, 2001946.
10.1002/advs.202001946 Google Scholar
- 22Y. Jiang, S. Li, Y. Fan, Z. Tang, Angew. Chem. Int. Ed. 2024, 136, e202404658.
- 23S. Hao, Y. Xue, C. Peng, Y. Mi, Y. Yan, M. Wang, Q. Han, G. Zheng, J. Am. Chem. Soc. 2024, 146, 25870–25877.
- 24E. R. Januario, P. F. Silvaino, A. P. Machado, J. Moreira Vaz, E. V. Spinace, Frontiers in Chemistry 2021, 9, 685073.
- 25C. Zhang, J. Wang, S. Ouyang, H. Song, J. Ye, L. Shi, Sci. China: Chem. 2023, 66, 2532–2557.
- 26K. Zheng, X. Zhang, J. Hu, C. Xu, J. Zhu, J. Li, M. Wu, S. Zhu, L. Li, S. Wang, Y. Lv, X. He, M. Zuo, C. Liu, Y. Pan, J. Zhu, Y. Sun, Y. Xie, Sci. China: Chem. 2024, 67, 869–875.
- 27S. Song, H. Song, L. Li, S. Wang, W. Chu, K. Peng, X. Meng, Q. Wang, B. Deng, Q. Liu, Z. Wang, Y. Weng, H. Hu, H. Lin, T. Kako, J. Ye, Nat. Catal. 2021, 4, 1032–1042.
- 28H. Saito, H. Sato, T. Higashi, T. Sugimoto, Angew. Chem. Int. Ed. 2023, 62, e202306058.
- 29H. Song, X. Meng, S. Wang, W. Zhou, S. Song, T. Kako, J. Ye, ACS Catal. 2020, 10, 14318–14326.
- 30L. Luo, L. Fu, H. Liu, Y. Xu, J. Xing, C. R. Chang, D. Y. Yang, J. Tang, Nat. Commun. 2022, 13, 2930.
- 31L. Luo, Z. Gong, Y. Xu, J. Ma, H. Liu, J. Xing, J. Tang, J. Am. Chem. Soc. 2022, 144, 740–750.
- 32H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 2019, 141, 20507–20515.
- 33W. Zhang, C. Fu, J. Low, D. Duan, J. Ma, W. Jiang, Y. Chen, H. Liu, Z. Qi, R. Long, Y. Yao, X. Li, H. Zhang, Z. Liu, J. Yang, Z. Zou, Y. Xiong, Nat. Commun. 2022, 13, 2806.
- 34H. Su, J.-T. Han, B. Miao, M. Salehi, C.-J. Li, Nat. Commun. 2024, 15, 6435.
- 35J. A. de Oliveira, J. C. da Cruz, O. R. Nascimento, C. Ribeiro, Appl. Catal. B-Environ. 2022, 318, 121827.
10.1016/j.apcatb.2022.121827 Google Scholar
- 36W. He, X. Zhang, K. Zheng, C. Wu, Y. Pan, H. Li, L. Xu, R. Xu, W. Chen, Y. Liu, C. Wang, Z. Sun, S. Wei, Angew. Chem. Int. Ed. 2023, 62, e202213365.
- 37G. Zhai, S. Yang, Y. Chen, J. Xu, S. Si, H. Zhang, Y. Liu, J. Ma, X. Sun, W. Huang, C. Gao, D. Liu, Y. Xiong, J. Am. Chem. Soc. 2025, 147, 2444–2454.
- 38M. Wu, J. Zhu, Y. Wu, S. Liu, K. Zheng, S. Wang, B. Li, J. Li, C. Liu, J. Hu, J. Zhu, Y. Sun, Y. Pan, Y. Xie, Angew. Chem. Int. Ed. 2024, 64, e202414814.
- 39S. P. Singh, A. Yamamoto, E. Fudo, A. Tanaka, H. Kominami, H. Yoshida, ACS Catal. 2021, 11, 13768–13781.
- 40G.-X. Dong, M.-R. Zhang, K. Su, Z.-L. Liu, M. Zhang, T.-B. Lu, J. Mater. Chem. A 2023, 11, 9989–9999.
- 41Y. Fan, W. Zhou, X. Qiu, H. Li, Y. Jiang, Z. Sun, D. Han, L. Niu, Z. Tang, Nat. Sustain. 2021, 4, 509–515.
- 42L. Luo, X. Han, K. Wang, Y. Xu, L. Xiong, J. Ma, Z. Guo, J. Tang, Nat. Commun. 2023, 14, 2690.
- 43D. Hu, A. Addad, K. Ben Tayeb, V. V. Ordomsky, A. Y. Khodakov, Cell Reports Physical Science 2023, 4, 101277.
- 44H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, M. Muhler, Phys. Chem. Chem. Phys. 2008, 10, 7092.
- 45R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 2013, 4, 1432.
- 46L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang, J. Long, Energy Environ. Sci. 2018, 11, 294–298.
- 47X. Yu, V. L. Zholobenko, S. Moldovan, D. Hu, D. Wu, V. V. Ordomsky, A. Y. Khodakov, Nat. Energy 2020, 5, 511–519.
- 48S. Wu, X. Tan, J. Lei, H. Chen, L. Wang, J. Zhang, J. Am. Chem. Soc. 2019, 141, 6592–6600.
- 49W. Jiang, J. Low, K. Mao, D. Duan, S. Chen, W. Liu, C.-W. Pao, J. Ma, S. Sang, C. Shu, X. Zhan, Z. Qi, H. Zhang, Z. Liu, X. Wu, R. Long, L. Song, Y. Xiong, J. Am. Chem. Soc. 2021, 143, 269–278.
- 50I. J. Pérez-Hermosillo, R. Ojeda-López, A. Domínguez-Ortiz, J. Marcos Esparza-Schulz, Materialia 2023, 28, 101725.
- 51P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan, R. C. W. Sung, Chem. Mater. 2004, 16, 915–918.
- 52D. C. Amaral, L. S. R. Rocha, L. I. Granone, M. M. Lage, M. S. Churio, M. D. Sanchez, E. Longo, H. M. S. Nascimento, M. Assis, F. Moura, M. A. Ponce, Inorg. Chem. 2023, 62, 12392–12402.
- 53Y. He, F. Guo, K. R. Yang, J. A. Heinlein, S. M. Bamonte, J. J. Fee, S. Hu, S. L. Suib, G. L. Haller, V. S. Batista, L. D. Pfefferle, J. Am. Chem. Soc. 2020, 142, 17119.