Equalized Dual Emissions from Copper Complexes via Multichannel Balanced Intersystem Crossing: Toward 100% Quantum Efficiencies
Jixiu Niu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Feifei Gao
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Both authors contributed equally to this work.
Search for more papers by this authorYe Wang
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorWu Lu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Dr. Jing Zhang
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiexu He
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorXinjin Lou
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorYuanxin Ma
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorDr. Chunbo Duan
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorDr. Chunmiao Han
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Hui Xu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJixiu Niu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Feifei Gao
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Both authors contributed equally to this work.
Search for more papers by this authorYe Wang
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorWu Lu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Dr. Jing Zhang
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiexu He
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorXinjin Lou
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorYuanxin Ma
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorDr. Chunbo Duan
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorDr. Chunmiao Han
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Hui Xu
Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Dual emissions containing equalized thermally activated delayed fluorescence and phosphorescence are achieved by a copper iodide complex QtBCzTTPPCuI, which exhibits ∼100% photoluminescence quantum efficiencies and record-high twofold increased external quantum efficiencies of ∼30% among pure-yellow spin-coated organic light-emitting diodes, owing to the contributions of high-lying ligand-centered charge transfer excited states to intersystem crossing.
Abstract
Luminescent materials have important applications in biology, medicine, catalysis, energy, information technology, and so on. However, to suppress quenching and improve efficiencies, how to balance singlet and triplet radiations for efficient dual emission composed of equalized thermally activated delayed fluorescence (TADF) and phosphorescence remains a formidable challenge. Here, we report that based on a rigid skeleton of triphosphine CuI complex, modification with carbazole donors results in high-lying ligand-centered charge transfer states, which provide additional channels for accurately optimizing the singlet-triplet ratios. We achieve equalized dual emissions containing 53% TADF and 47% phosphorescence, ∼100% photo- and electro-luminescence quantum efficiencies and record-high external quantum efficiencies of ∼30% for pure-yellow organic light-emitting diodes. Photophysical and exciton kinetics analyses indicate the incorporation of high-lying ligand-centered triplet states into dual-emissive electroluminescence is based on energy-level matching with the first triplet states of host matrixes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
anie202508667-sup-0001-SuppMat.docx11.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913–915.
- 2H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 3Y. Liu, S. Yiu, C. Ho, W. Wong, Coord. Chem. Rev. 2018, 375, 514–557.
- 4C. Bizzarri, E. Spuling, D. M. Knoll, D. Volz, S. Bräse, Coord. Chem. Rev. 2018, 373, 49–82.
- 5C. L. Ho, W. Wong, Q. Wang, D. Ma, L. Wang, Z. Lin, Adv. Funct. Mater. 2008, 18, 928–937.
- 6T. Fleetham, G. Li, J. Li, Adv. Mater. 2017, 29, 1601861.
- 7K. Li, G. S. Ming Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653–1673.
- 8G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer, K. Leo, Adv. Funct. Mater. 2009, 19, 1319–1333.
- 9J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539–541.
- 10M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature 2001, 409, 494–497.
- 11M. A. Baldo, D. F. O'brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151–154.
- 12M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750–753.
- 13Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Mater. 2004, 16, 432–436.
- 14H. Amouri, Chem. Rev. 2023, 123, 230–270.
- 15T. Li, S. Zheng, P. I. Djurovich, M. E. Thompson, Chem. Rev. 2024, 124, 4332–4392.
- 16M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
- 17A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802–4806.
- 18Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
- 19L. Kang, J. Chen, T. Teng, X. Chen, R. Yu, C. Lu, Dalton. Trans. 2015, 44, 11649–11659.
- 20Z. Han, X. Dong, S. Zang, Adv. Opt. Mater. 2021, 9, 2100081.
- 21X. Tang, C. A. M. Senevirathne, T. Matsushima, A. S. D. Sandanayaka, C. Adachi, Adv. Mater. 2024, 36, 2211873.
- 22R. Hamze, J. L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P. I. Djurovich, G. Bertrand, M. E. Thompson, Science 2019, 363, 601–606.
- 23S. Shi, M. C. Jung, C. Coburn, A. Tadle, M. R. D. Sylvinson, P. I. Djurovich, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 3576–3588.
- 24A. Ying, Y. Huang, C.-H. Lu, Z. Chen, W.-K. Lee, X. Zeng, T. Chen, X. Cao, C.-C. Wu, S. Gong, C. Yang, ACS Appl. Mater. Interfaces 2021, 13, 13478–13486.
- 25G. Baryshnikov, B. Minaev, H. Ågren, Chem. Rev. 2017, 117, 6500–6537.
- 26R. Czerwieniec, M. J. Leitl, H. H. H. Homeier, H. Yersin, Coord. Chem. Rev. 2016, 325, 2–28.
- 27J. Chen, T. Teng, L. Kang, X. Chen, X. Wu, R. Yu, C. Lu, Inorg. Chem. 2016, 55, 9528–9536.
- 28M. Z. Shafikov, A. F. Suleymanova, R. Czerwieniec, H. Yersin, Chem. Mater. 2017, 29, 1708–1715.
- 29T. Li, D. S. Muthiah Ravinson, R. Haiges, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2020, 142, 6158–6172.
- 30X. Gan, R. Yu, X. Chen, M. Yang, L. Lin, X. Wu, C. Lu, Dalton. Trans. 2018, 47, 5956–5960.
- 31A. F. Rausch, H. H. H. Homeier, H. Yersin, Top. Organomet. Chem. 2010, 29, 193–235.
- 32M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, J. Am. Chem. Soc. 2014, 136, 16032–16038.
- 33T. Hofbeck, U. Monkowius, H. Yersin, J. Am. Chem. Soc. 2015, 137, 399–404.
- 34C. Duan, C. Han, R. Du, Y. Wei, H. Xu, Adv. Opt. Mater. 2018, 6, 1800437.
- 35J. Feng, A. P. M. Reponen, A. S. Romanov, M. Linnolahti, M. Bochmann, N. C. Greenham, T. Penfold, D. Credgington, Adv. Funct. Mater. 2021, 31, 2005438.
- 36Q. Gu, F. Chotard, J. Eng, A. P. M. Reponen, I. J. Vitorica-Yrezabal, A. W. Woodward, T. J. Penfold, D. Credgington, M. Bochmann, A. S. Romanov, Chem. Mater. 2022, 34, 7526–7542.
- 37C.-W. Hsu, C. Lin, M.-W. Chung, Y. Chi, G.-H. Lee, P. Chou, C.-H. Chang, P. Chen, J. Am. Chem. Soc. 2011, 133, 12085–12099.
- 38R. Hamze, S. Shi, S. C. Kapper, D. S. Muthiah Ravinson, L. Estergreen, M.-C. Jung, A. C. Tadle, R. Haiges, P. I. Djurovich, J. L. Peltier, R. Jazzar, G. Bertrand, S. E. Bradforth, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 8616–8626.
- 39B. Guo, F. Yang, Y. Wang, Q. Wei, L. Liu, X. Zhong, L. Wang, J. Gong, F. Li, W.-Y. Wong, K. A. Alamry, Y. Zhao, J. Lumin 2020, 220, 116963.
- 40A. Gusev, E. Braga, E. Zamnius, M. Kiskin, A. Ali, G. Baryshnikov, W. Linert, Dalton. Trans. 2023, 52, 14995–15008.
- 41M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 133, 10348–10351.
- 42M. Klein, N. Rau, M. Wende, J. Sundermeyer, G. Cheng, C.-M. Che, A. Schinabeck, H. Yersin, Chem. Mater. 2020, 32, 10365–10382.
- 43D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. Abdi Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159–163.
- 44J. Zhang, C. Duan, C. Han, H. Yang, Y. Wei, H. Xu, Adv. Mater. 2016, 28, 5975–5979.
- 45J. Sun, N. Li, Z. Gong, Y. Man, C. Zhong, C. Duan, S. Chen, J. Zhang, C. Han, H. Xu, Nat. Commun. 2024, 15, 4997.
- 46W. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y. Wang, B. Yang, Y. Ma, Adv. Funct. Mater. 2014, 24, 1609–1614.
- 47F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, A. P. Monkman, Adv. Mater. 2013, 25, 3707–3714.
- 48M. Cai, M. Auffray, D. Zhang, Y. Zhang, R. Nagata, Z. Lin, X. Tang, C.-Y. Chan, Y.-T. Lee, T. Huang, X. Song, Y. Tsuchiya, C. Adachi, L. Duan, Chem. - Eur. J. 2021, 420, 127591.
- 49H. Wang, Y. Liu, B. Yu, S. Song, Y. Zheng, K. Liu, P. Chen, H. Wang, J. Jiang, T. Li, Angew. Chem. Int. Ed. 2023, 62, e202217195.
- 50A. Ying, Y. Huang, C. Lu, Z. Chen, W. Lee, X. Zeng, T. Chen, X. Cao, C. Wu, S. Gong, C. Yang, ACS Appl. Mater. Interfaces. 2021, 13, 13478–13486.
- 51A. C. Brannan, H. H. Cho, A. P. M. Reponen, S. Gorgon, N. L. Phuoc, M. Linnolahti, N. C. Greenham, A. S. Romanov, Adv. Mater. 2024, 36, 2404357.