Interfacial Water Structure Modulation on Unconventional Phase Non-Precious Metal Alloy Nanostructures for Efficient Nitrate Electroreduction to Ammonia in Neutral Media
Yunhao Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorFengkun Hao
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorHongming Xu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorMingzi Sun
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorXixi Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYuecheng Xiong
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJingwen Zhou
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorFu Liu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYubing Hu
Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYangbo Ma
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorXiang Meng
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorLiang Guo
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorChaohui Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorMingzheng Shao
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorGuozhi Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJuan Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorPengyi Lu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJinwen Yin
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJie Wang
Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039 China
Search for more papers by this authorProf. Wenxin Niu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorProf. Chenliang Ye
Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorProf. Qinghua Zhang
Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Shibo Xi
Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833 Singapore
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Minhua Shao
Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077 China
Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhanxi Fan
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077 China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYunhao Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorFengkun Hao
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorHongming Xu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorMingzi Sun
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorXixi Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYuecheng Xiong
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJingwen Zhou
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorFu Liu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYubing Hu
Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYangbo Ma
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorXiang Meng
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorLiang Guo
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorChaohui Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorMingzheng Shao
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorGuozhi Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJuan Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorPengyi Lu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJinwen Yin
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJie Wang
Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039 China
Search for more papers by this authorProf. Wenxin Niu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorProf. Chenliang Ye
Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorProf. Qinghua Zhang
Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Shibo Xi
Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833 Singapore
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Minhua Shao
Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077 China
Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhanxi Fan
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077 China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
The controlled synthesis of noble metal-free CuNi alloy nanostructures with unconventional hcp/fcc heterophase has been successfully achieved. Notably, hcp/fcc CuNi nanoalloys demonstrate much superior catalytic performance toward ammonia electrosynthesis from nitrate than the common fcc CuNi counterparts. Mechanism studies reveal that the hcp/fcc CuNi alloys facilitate the formation of K+–H2O, enhance the interfacial water dissociation, and create high *H coverage, thereby boosting the ammonia synthesis.
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) has been recognized as a sustainable route for nitrate removal and value-added ammonia (NH3) synthesis. Regulating the surface active hydrogen (*H) behavior is crucial but remains a formidable challenge, especially in neutral electrolytes, greatly limiting the highly selective NH3 formation. Herein, we report the controlled synthesis of heterophase hcp/fcc non-precious CuNi alloy nanostructures for efficient NH3 electrosynthesis in neutral media. Significantly, hcp/fcc Cu10Ni90 exhibits excellent performance with NH3 Faradaic efficiency and yield rate of 98.1% and 57.4 mg h−1 mgcat−1, respectively. In situ studies suggest that the high proportion of interfacial K+ ion hydrated water (K+–H2O) on hcp/fcc Cu10Ni90 creates high *H coverage via boosting interfacial water dissociation, enabling the rapid hydrogenation kinetics for NH3 synthesis. Theoretical calculations reveal that the superior NO3RR performance of hcp/fcc Cu10Ni90 originates from both the existence of hcp phase to improve the electroactivity and the high Ni content to guarantee an efficient active hydrogen supply. The strong interaction between Ni and Cu also optimizes the electronic structures of Cu sites to realize fast intermediate conversions with low energy barriers. This work provides a novel strategy to optimize surface *H behavior via tuning interfacial water structure by crystal phase control.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202508617-sup-0001-SuppMat.docx6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Liu, L. Bai, A. Bergmann, B. R. Cuenya, J. Luo, Chem 2024, 10, 1–24.
- 2Y. Xiong, Y. Wang, J. Zhou, F. Liu, F. Hao, Z. Fan, Adv. Mater. 2024, 36, 2304021.
- 3Q. Wu, F. Zhu, G. Wallace, X. Yao, J. Chen, Chem. Soc. Rev. 2024, 53, 557–565.
- 4X. Yang, S. Mukherjee, T. O'Carroll, Y. Hou, M. R. Singh, J. A. Gauthier, G. Wu, Angew. Chem. Int. Ed. 2023, 62, e202215938.
- 5J. Liang, Z. Li, L. Zhang, X. He, Y. Luo, D. Zheng, Y. Wang, T. Li, H. Yan, B. Ying, S. Sun, Q. Liu, M. S. Hamdy, B. Tang, X. Sun, Chem 2023, 9, 1768–1827.
- 6W. Liao, J. Wang, G. Ni, K. Liu, C. Liu, S. Chen, Q. Wang, Y. Chen, T. Luo, X. Wang, Y. Wang, W. Li, T. S. Chan, C. Ma, H. Li, Y. Liang, W. Liu, J. Fu, B. Xi, M. Liu, Nat. Commun. 2024, 15, 1264.
- 7S. Tang, M. Xie, S. Yu, X. Zhan, R. Wei, M. Wang, W. Guan, B. Zhang, Y. Wang, H. Zhou, G. Zheng, Y. Liu, J. H. Warner, G. Yu, Nat. Commun. 2024, 15, 6932.
- 8K. Wang, R. Mao, R. Liu, J. Zhang, H. Zhao, W. Ran, X. Zhao, Nat. Water 2023, 1, 1068–1078.
- 9Y. Wan, M. Pei, Y. Tang, Y. Liu, W. Yan, J. Zhang, R. Lv, Adv. Mater. 2025, 37, 2417696.
- 10Y. Du, H. Lu, J. Wu, Y. Zou, Z. F. Huang, J. J. Zou, T. Mu, J. Gao, X. D. Zhu, Y. C. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202420903.
- 11F.-Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S. Hao, P. Zhu, H. Wang, Nat. Catal. 2024, 7, 1032–1043.
- 12S. H. Han, H. J. Li, T. L. Li, F. P. Chen, R. Yang, Y. F. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414.
- 13F. Y. Chen, Z. Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich, H. Wang, Nat. Nanotechnol. 2022, 17, 759–767.
- 14L. Sun, H. Lv, J. Xiao, B. Liu, Adv. Mater. 2024, 36, 2402767.
- 15Y. Wang, M. Sun, J. Zhou, Y. Xiong, Q. Zhang, C. Ye, X. Wang, P. Lu, T. Feng, F. Hao, F. Liu, J. Wang, Y. Ma, J. Yin, S. Chu, L. Gu, B. Huang, Z. Fan, Proc. Natl. Acad. Sci. USA 2023, 120, e2306461120.
- 16E. Murphy, Y. Liu, I. Matanovic, M. Ruscher, Y. Huang, A. Ly, S. Guo, W. Zang, X. Yan, A. Martini, J. Timoshenko, B. R. Cuenya, I. V. Zenyuk, X. Pan, E. D. Spoerke, P. Atanassov, Nat. Commun. 2023, 14, 4554.
- 17W. Wen, S. Fang, Y. Zhou, Y. Zhao, P. Li, X. Y. Yu, Angew. Chem. Int. Ed. 2024, 63, e202408382.
- 18W. He, J. Zhang, S. Dieckhofer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, Nat. Commun. 2022, 13, 1129.
- 19Y. Xu, C. Cheng, J. Zhu, B. Zhang, Y. Wang, Y. Yu, Angew. Chem. Int. Ed. 2024, 63, e202400289.
- 20Z. Gu, Y. Zhang, Y. Fu, D. Hu, F. Peng, Y. Tang, H. Yang, Angew. Chem. Int. Ed. 2024, 63, e202409125.
- 21B. Xu, D. Li, Q. Zhao, S. Feng, X. Peng, P. K. Chu, Coord. Chem. Rev. 2024, 502, 215609.
- 22X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu, B. Zhang, Chem. Eng. J. 2021, 403, 126269.
- 23W. Wang, J. Chen, E. C. M. Tse, J. Am. Chem. Soc. 2023, 145, 26678–26687.
- 24K. Liu, H. Li, M. Xie, P. Wang, Z. Jin, Y. Liu, M. Zhou, P. Li, G. Yu, J. Am. Chem. Soc. 2024, 146, 7779–7790.
- 25P. Li, R. Li, Y. Liu, M. Xie, Z. Jin, G. Yu, J. Am. Chem. Soc. 2023, 145, 6471–6479.
- 26W. Jang, D. Oh, J. Lee, J. Kim, J. E. Matthews, H. Kim, S. W. Lee, S. Lee, Y. Xu, J. M. Yu, S. W. Hwang, T. F. Jaramillo, J. W. Jang, S. Cho, J. Am. Chem. Soc. 2024, 146, 27417–27428.
- 27Y. Bu, C. Wang, W. Zhang, X. Yang, J. Ding, G. Gao, Angew. Chem. Int. Ed. 2023, 62, e202217337.
- 28Y. Fu, S. Wang, Y. Wang, P. Wei, J. Shao, T. Liu, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2023, 62, e202303327.
- 29H. Lv, L. Sun, D. Tang, B. Liu, Angew. Chem. Int. Ed. 2025, 64, e202423112.
- 30C. Han, L. Sun, S. Han, B. Liu, Angew. Chem. Int. Ed. 2025, 64, e202416910.
- 31X. Fan, C. Liu, X. He, Z. Li, L. Yue, W. Zhao, J. Li, Y. Wang, T. Li, Y. Luo, D. Zheng, S. Sun, Q. Liu, L. Li, W. Chu, F. Gong, B. Tang, Y. Yao, X. Sun, Adv. Mater. 2024, 36, 2401221.
- 32X. He, T. Xie, K. Dong, J. Nan, H. Sun, Y. Yao, X. Fan, D. Zheng, Y. Luo, S. Sun, Q. Liu, L. Li, W. Chu, L. Xie, Q. Kong, X. Sun, Sci. China Mater. 2024, https://doi.org/10.1007/s40843-40024-42798-40845.
- 33Y. Li, L. Ouyang, J. Chen, X. Fan, H. Sun, X. He, D. Zheng, S. Sun, Y. Luo, Q. Liu, L. Li, W. Chu, J. Du, Q. Kong, B. Zheng, X. Sun, J. Colloid Interface Sci. 2024, 663, 405–412.
- 34Y. Zhang, X. Fan, X. He, T. Yan, Y. Yao, D. Zheng, J. Zhao, Q. Cai, Q. Liu, L. Li, W. Chu, S. Sun, X. Sun, Chin. Chem. Lett. 2024, 35, 109806.
- 35Y. Wang, F. Hao, M. Sun, M. T. Liu, J. Zhou, Y. Xiong, C. Ye, X. Wang, F. Liu, J. Wang, P. Lu, Y. Ma, J. Yin, H. C. Chen, Q. Zhang, L. Gu, H. M. Chen, B. Huang, Z. Fan, Adv. Mater. 2024, 36, 2313548.
- 36Y. Xiong, Y. Wang, C. C. Tsang, J. Zhou, F. Hao, F. Liu, J. Wang, S. Xi, J. Zhao, Z. Fan, Environ. Sci. Technol. 2024, 58, 10863–10873.
- 37Y. Xiong, Y. Wang, M. Sun, J. Chen, J. Zhou, F. Hao, F. Liu, P. Lu, X. Meng, L. Guo, Y. Liu, S. Xi, Q. Zhang, B. Huang, Z. Fan, Adv. Mater. 2024, 36, 2407889.
- 38X. Wang, Y. Ge, M. Sun, Z. Xu, B. Huang, L. Li, X. Zhou, S. Zhang, G. Liu, Z. Shi, A. Zhang, B. Chen, Q. Wa, Q. Luo, Y. Zhu, B. Huang, H. Zhang, J. Am. Chem. Soc. 2024, 146, 24141–24149.
- 39Y. Wang, Y. Xiong, M. Sun, J. Zhou, F. Hao, Q. Zhang, C. Ye, X. Wang, Z. Xu, Q. Wa, F. Liu, X. Meng, J. Wang, P. Lu, Y. Ma, J. Yin, Y. Zhu, S. Chu, B. Huang, L. Gu, Z. Fan, Angew. Chem. Int. Ed. 2024, 63, e202402841.
- 40Z. Fan, M. Bosman, Z. Huang, Y. Chen, C. Ling, L. Wu, Y. A. Akimov, R. Laskowski, B. Chen, P. Ercius, J. Zhang, X. Qi, M. H. Goh, Y. Ge, Z. Zhang, W. Niu, J. Wang, H. Zheng, H. Zhang, Nat. Commun. 2020, 11, 3293.
- 41Z. Zhang, G. Liu, X. Cui, Y. Gong, D. Yi, Q. Zhang, C. Zhu, F. Saleem, B. Chen, Z. Lai, Q. Yun, H. Cheng, Z. Huang, Y. Peng, Z. Fan, B. Li, W. Dai, W. Chen, Y. Du, L. Ma, C. J. Sun, I. Hwang, S. Chen, L. Song, F. Ding, L. Gu, Y. Zhu, H. Zhang, Sci. Adv. 2021, 7, eabd6647.
- 42J. Zhou, T. Wang, L. Chen, L. Liao, Y. Wang, S. Xi, B. Chen, T. Lin, Q. Zhang, C. Ye, X. Zhou, Z. Guan, L. Zhai, Z. He, G. Wang, J. Wang, J. Yu, Y. Ma, P. Lu, Y. Xiong, S. Lu, Y. Chen, B. Wang, C. S. Lee, J. Cheng, L. Gu, T. Zhao, Z. Fan, Proc. Natl. Acad. Sci. USA 2022, 119, e2204666119.
- 43Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. Xi, Y. Du, A. Borgna, Z. Lai, Q. Zhang, B. Li, Y. Zong, Y. Han, L. Gu, H. Zhang, Adv. Mater. 2018, 30, 1801741.
- 44K. Yang, S. H. Han, C. Cheng, C. Guo, T. Li, Y. Yu, J. Am. Chem. Soc. 2024, 146, 12976–12983.
- 45Y. Zhou, L. Zhang, M. Wang, Z. Zhu, N. Li, T. Qian, C. Yan, J. Lu, ACS Catal. 2024, 4, 7907–7916.
- 46J. J. Zhang, Y. Y. Lou, Z. Wu, X. J. Huang, S. G. Sun, J. Am. Chem. Soc. 2024, 146, 24966–24977.
- 47J. Y. Fang, Q. Z. Zheng, Y. Y. Lou, K. M. Zhao, S. N. Hu, G. Li, O. Akdim, X. Y. Huang, S. G. Sun, Nat. Commun. 2022, 13, 7899.
- 48G. Wu, W. Zhang, R. Yu, Y. Yang, J. Jiang, M. Sun, A. Du, W. He, L. Dai, X. Mao, Z. Chen, Q. Qin, Angew. Chem. Int. Ed. 2024, 63, e202410251.
- 49C. Ma, H. Zhang, J. Xia, X. Zhu, K. Qu, F. Feng, S. Han, C. He, X. Ma, G. Lin, W. Cao, X. Meng, L. Zhu, Y. Yu, A. L. Wang, Q. Lu, J. Am. Chem. Soc. 2024, 146, 20069–20079.
- 50Y. Li, Z. Lu, L. Zheng, X. Yan, J. Xie, Z. Yu, S. Zhang, F. Jiang, H. Chen, Energy Environ. Sci. 2024, 17, 4582–4593.
- 51M. Xie, G. Zhu, H. Yang, B. Liu, M. Li, C. Qi, L. Wang, W. Jiang, P. Qiu, W. Luo, Adv. Energy Mater. 2024, 14, 2401717.
- 52L. Wu, J. Feng, L. Zhang, S. Jia, X. Song, Q. Zhu, X. Kang, X. Xing, X. Sun, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202307952.
- 53M. C. Figueiredo, J. Souza-Garcia, V. Climent, J. M. Feliu, Electrochem. Commun. 2009, 11, 1760–1763.
- 54V. K. Agrawal, M. Trenary, Surf. Sci. 1991, 259, 116–128.
- 55K.-i. Ataka, T. Yotsuyanagi, M. Osawa, J. Phys. Chem. A 1996, 100, 10664–10672.
- 56Z.-H. Xue, H.-C. Shen, P. Chen, G.-X. Pan, W.-W. Zhang, W.-M. Zhang, S.-N. Zhang, X.-H. Li, C. T. Yavuz, ACS Energy Lett. 2023, 8, 3843–3851.
- 57S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu, Z. Tan, J. Li, J. Yan, Q. Chen, M. Chen, Nat. Catal. 2021, 4, 711–718.
- 58Y.-Y. Lou, Q.-Z. Zheng, S.-Y. Zhou, J.-Y. Fang, O. Akdim, X.-Y. Ding, R. Oh, G.-S. Park, X. Huang, S.-G. Sun, ACS Catal. 2024, 14, 5098–5108.
- 59Y. H. Wang, S. Zheng, W. M. Yang, R. Y. Zhou, Q. F. He, P. Radjenovic, J. C. Dong, S. Li, J. Zheng, Z. L. Yang, G. Attard, F. Pan, Z. Q. Tian, J. F. Li, Nature 2021, 600, 81–85.
- 60Y. Liu, Z. Zhuang, Y. Liu, N. Liu, Y. Li, Y. Cheng, J. Yu, R. Yu, H. Li, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202411396.
- 61Y. Chang, L. Kong, D. Xu, X. Lu, S. Wang, Y. Li, J. Bao, Y. Wang, Y. Liu, Angew. Chem. Int. Ed. 2025, 64, e202414234.
- 62T. Zhang, Q. Ye, Z. Han, Q. Liu, Y. Liu, D. Wu, H. J. Fan, Nat. Commun. 2024, 15, 6508.
- 63S. J. Zheng, X. Y. Dong, H. Chen, R. W. Huang, J. Cai, S. Q. Zang, Angew. Chem. Int. Ed. 2025, 64, e202413033.
- 64Y. Li, C. Wang, L. Yang, W. Ge, J. Shen, Y. Zhu, C. Li, Adv. Energy Mater. 2024, 14, 2303863.
- 65D. Chen, S. Zhang, D. Yin, Q. Quan, Y. Zhang, W. Wang, Y. Meng, X. Liu, S. Yip, T. Yanagida, C. Zhi, J. C. Ho, Chem. Catal. 2024, 4, 101024.
- 66W. Yu, J. Yu, M. Huang, Y. Wang, Y. Wang, J. Li, H. Liu, W. Zhou, Energy Environ. Sci. 2023, 16, 2991–3001.
- 67J. Zhou, M. Wen, R. Huang, Q. Wu, Y. Luo, Y. Tian, G. Wei, Y. Fu, Energy Environ. Sci. 2023, 16, 2611–2620.
- 68J. Lv, X. Sun, F. Wang, R. Yang, T. Zhang, T. Liang, W. Rong, Q. Yang, W. Xue, L. Wang, X. Xu, Y. Liu, Adv. Funct. Mater. 2024, 34, 2411491.
- 69J. Yu, R. T. Gao, X. Guo, N. T. Nguyen, L. Wu, L. Wang, Angew. Chem. Int. Ed. 2025, 64, 7907–7916.
- 70Y. Liu, J. Wei, Z. Yang, L. Zheng, J. Zhao, Z. Song, Y. Zhou, J. Cheng, J. Meng, Z. Geng, J. Zeng, Nat. Commun. 2024, 15, 3619.
- 71F. Liu, J. Zhou, M. Sun, Z. Xu, H. Wang, N. Yao, Y. Wang, F. Hao, Y. Xiong, J. Wang, L. Guo, Q. Wa, G. Wang, X. Meng, M. Shao, C. Wang, H. C. Chen, H. M. Chen, Y. Zhu, B. Huang, Z. Fan, Angew. Chem. Int. Ed. 2025, 64, e202504641.
- 72R. Gao, J. Zhang, G. Fan, X. Wang, F. Ding, Y. Guo, C. Han, Y. Gao, A. Shen, J. Ding, L. Wu, X. Gu, Angew. Chem. Int. Ed. 2025, 64, e202505948.
- 73H. Guo, Y. Zhou, K. Chu, X. Cao, J. Qin, N. Zhang, M. B. J. Roeffaers, R. Zboril, J. Hofkens, K. Mullen, F. Lai, T. Liu, J. Am. Chem. Soc. 2025, 147, 3119–3128.