In Situ Solid Conversion into Mechanically Adaptive LiF-Rich Solid Electrolyte Interphase via MgF2 Precursor on Si Surface in Lithium-Ion Batteries
Jiayang Sun
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorLinze Lv
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
Search for more papers by this authorCorresponding Author
Yuchen Li
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215011 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yan Wang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLongfei Wang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorWeixing Xiong
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorLei Huang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorQunting Qu
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorCorresponding Author
Honghe Zheng
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiayang Sun
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorLinze Lv
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
Search for more papers by this authorCorresponding Author
Yuchen Li
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215011 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yan Wang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLongfei Wang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorWeixing Xiong
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorLei Huang
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorQunting Qu
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Search for more papers by this authorCorresponding Author
Honghe Zheng
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006 P.R. China
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
MgF2 coating with high coating integrity is in situ constructed on Si nanoparticles. During electrochemical cycling, the MgF2 layer undergoes in situ conversion into LiF and Mg, thereby forming a robust solid electrolyte interphase (SEI) with high mechanical adaptability, excellent electronic insulation, and high ionic conductivity. This unique transformed SEI layer effectively mitigates mechanical degradation and interfacial side reactions, contributing to significantly enhanced electrochemical properties of the Si anode.
Abstract
Silicon (Si) anodes hold exceptional promise for high-energy-density lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (∼4200 mAh g⁻¹). However, their commercialization is severely hindered by the significant volume expansion (∼300%) and unstable solid electrolyte interphase (SEI). Conventional SEI, predominantly composed of organic species, suffers from low ionic conductivity, low electronic insulation, and poor mechanical robustness, leading to rapid capacity decay. Herein, we propose an interface engineering strategy by decorating Si nanoparticles with an in situ conversed MgF2 layer (with coating integrity of 94.2%). During initial lithiation, the applied MgF2 layer is in situ conversed into SEI film with high ionic conductivity, electronic insulation, and better mechanical adaptability. The prepared Si@MgF2-1 anode achieves a high initial coulombic efficiency (91.7%), superior rate capability (2000 mAh g⁻¹ at 10 C), and remarkable cycling stability (1794.9 mAh g−1 after 500 cycles). Full-cell based on the Si@MgF2-1 anode and NCM811 cathode further validate the practicality of this approach. The robust conversion strategy for the construction of a mechanically adaptive LiF-rich SEI layer holds significant promise for the advancement of durable silicon-based LIBs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202507688-sup-0001-SuppMat.docx4.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966–4985.
- 2M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 3J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.
- 4X. Li, W. Liu, Y. Wang, L. Lv, H. Feng, S. Gu, H. Zheng, Energy Storage Mater. 2024, 66, 103207.
- 5X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong, K. Müllen, X. Li, L. Zhi, Nat. Commun. 2020, 11, 3826.
- 6Y. Wang, Q. Qu, G. Li, T. Gao, F. Qian, J. Shao, W. Liu, Q. Shi, H. Zheng, Small 2016, 12, 6033–6041.
- 7Z. Yang, L. Qiu, M. Zhang, Y. Zhong, B. Zhong, Y. Song, G. Wang, Y. Liu, Z. Wu, X. Guo, Chem. Eng. J. 2021, 423, 130127.
- 8H. Mi, X. Yang, Y. Li, P. Zhang, L. Sun, Chem. Eng. J. 2018, 351, 103–109.
- 9F.-S. Li, Y.-S. Wu, J. Chou, N.-L. Wu, Chem. Commun. 2015, 51, 8429–8431.
- 10L. Wang, Y. Zhao, J. Sun, Y. Li, Q. Qu, H. Zheng, Carbon 2024, 230, 119656.
- 11Y. Li, Z. Cao, Y. Wang, L. Lv, J. Sun, W. Xiong, Q. Qu, H. Zheng, ACS Energy Lett. 2023, 8, 4193–4203.
- 12L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui, Y. Du, P. Liu, M. Al-Mamun, S. Zhang, H. Zhao, Angew. Chem. Int. Ed. 2019, 58, 8824–8828.
- 13K. M. Abraham, J. Phys. Chem. Lett. 2015, 6, 830–844.
- 14D. Ma, Z. Cao, A. Hu, Nano-Micro Lett. 2014, 6, 347–358.
- 15M. Ashuri, Q. He, L. L. Shaw, Nanoscale 2016, 8, 74–103.
- 16Z. Li, L. Wang, X. Huang, X. He, Small 2024, 20, 2305429.
- 17X.-B. Cheng, S.-J. Yang, Z. Liu, J.-X. Guo, F.-N. Jiang, F. Jiang, X. Xiong, W.-B. Tang, H. Yuan, J.-Q. Huang, Y. Wu, Q. Zhang, Adv. Mater. 2024, 36, 2307370.
- 18Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, C. Wu, Energy Storage Mater. 2019, 16, 411–418.
- 19A. Y. Chen, Z. Deng, A. N. Billings, U. O. S. Seker, M. Y. Lu, R. J. Citorik, B. Zakeri, T. K. Lu, Nat. Materials 2014, 13, 515–523.
- 20B. Wu, C. Chen, L. H. J. Raijmakers, J. Liu, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Energy Storage Mater. 2023, 57, 508–539.
- 21L. Lv, Y. Wang, W. Huang, Y. Li, Q. Shi, H. Zheng, ACS Appl. Mater. Interfaces 2022, 14, 35246–35254.
- 22Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou, S. Yan, H. Liu, X. Song, H. Zhou, W. Hou, P. Zhou, N. Hu, Q. Feng, Y. Li, K. Liu, Nat. Energy 2024, 10, 191–204.
- 23Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Adv. Mater. 2021, 33, 2103178.
- 24Y. Xia, W. Hou, P. Zhou, Y. Ou, G. Cheng, C. Guo, F. Liu, W. Zhang, S. Yan, Y. Lu, Y. Zeng, K. Liu, Nano Lett. 2024, 24, 12791–12798, acs.nanolett.4c02983.
- 25P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202731.
- 26Z. Cao, X. Zheng, Y. Wang, W. Huang, Y. Li, Y. Huang, H. Zheng, Nano Energy 2022, 93, 106811.
- 27K. Cheng, S. Tu, B. Zhang, W. Wang, X. Wang, Y. Tan, X. Chen, C. Li, C. Li, L. Wang, Y. Sun, Energy Environ. Sci. 2024, 17, 2631–2641.
- 28J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, H. Wu, Energy Storage Mater. 2019, 16, 85–90.
- 29W. Huang, Y. Wang, L. Lv, W. Wang, C. Jin, G. Zhu, Q. Shi, Q. Qu, C. Jin, H. Zheng, Energy Storage Mater. 2021, 42, 493–501.
- 30O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang, M. Chen, J. Nai, T. Liu, W. Zhang, Y. Liu, X. Tao, Adv. Mater. 2020, 32, 2000223.
- 31J. Wang, Z. Yang, B. Mao, Y. Wang, Y. Jiang, M. Cao, ACS Energy Lett. 2022, 7, 2781–2791.
- 32K. Park, J.-H. Park, S.-G. Hong, J. Yoon, S. Park, J.-H. Kim, D. Yoon, H. Kim, Y.-H. Son, J.-H. Park, S. Kwon, Electrochim. Acta 2016, 222, 830–837.
- 33H. Li, Z. Wang, L. Dang, K. Yu, R. Yang, A. Fu, X. Liu, Y.-G. Guo, H. Li, Small 2024, 20, 2307722.
- 34B. H. Shen, S. Wang, W. E. Tenhaeff, Sci. Adv. 2019, 5, eaaw4856.
- 35F. Dou, Y. Sun, X. Guo, C. Yin, H. Zhou, G. Chen, H. Pang, D. Zhang, ACS Appl. Mater. Interfaces 2025, 17, 2403–2412.
- 36S. Pan, J. Han, Y. Wang, Z. Li, F. Chen, Y. Guo, Z. Han, K. Xiao, Z. Yu, M. Yu, S. Wu, D.-W. Wang, Q.-H. Yang, Adv. Mater. 2022, 34, 2203617.
- 37Y. Zhai, Z. Zhong, N. Kuang, Q. Li, T. Xu, J. He, H. Li, X. Yin, Y. Jia, Q. He, S. Wu, Q.-H. Yang, J. Am. Chem. Soc. 2024, 146, 15209–15218.
- 38Q. Fang, S. Xu, X. Sha, D. Liu, X. Zhang, W. Li, S. Weng, X. Li, L. Chen, H. Li, B. Wang, Z. Wang, X. Wang, Energy Environ. Sci. 2024, 17, 6368–6376.
- 39K. Jang, H. J. Song, J. B. Park, S. W. Jung, D.-W. Kim, Energy Environ. Sci. 2024, 17, 4622–4633.
- 40J. Sun, Y. Li, L. Lv, L. Wang, W. Xiong, L. Huang, Q. Qu, Y. Wang, M. Shen, H. Zheng, Adv. Funct. Mater. 2024, 63, e202406511.
- 41Q. Xu, X. Yang, M. Rao, D. Lin, K. Yan, R. Du, J. Xu, Y. Zhang, D. Ye, S. Yang, G. Zhou, Y. Lu, Y. Qiu, Energy Storage Mater. 2020, 26, 73–82.
- 42S. Mei, B. Xiang, S. Guo, J. Deng, J. Fu, X. Zhang, Y. Zheng, B. Gao, K. Huo, P. K. Chu, Adv. Funct. Mater. 2023, 2301217.
- 43L. Li, C. Fang, W. Wei, L. Zhang, Z. Ye, G. He, Y. Huang, Nano Energy 2020, 72, 104651.
- 44E. Cha, J. H. Yun, R. Ponraj, D. K. Kim, Mater. Chem. Front. 2021, 5, 6294–6314.
- 45X.-D. Chen, S. Zhao, X.-F. Feng, J. Huang, Y. Wang, Z.-C. Qiu, J.-B. Wang, Y.-Y. Huang, L.-T. Zheng, M.-D. Wei, Z.-S. Hong, Rare Met. 2025, 44 , 2805–2814.
- 46C. R. Lee, H. Y. Jang, H. J. Leem, M. A. Lee, W. Kim, J. Kim, J. H. Song, J. Yu, J. Mun, S. Back, H. Kim, Adv. Energy Mater. 2023, 2302906.
- 47E. Wang, J. Wan, Y. Guo, Q. Zhang, W. He, C. Zhang, W. Chen, H. Yan, D. Xue, T. Fang, F. Wang, R. Wen, S. Xin, Y. Yin, Y. Guo, Angew. Chem. 2023, 135, e202216354.
- 48Y. Yao, X. Chen, N. Yao, J. Gao, G. Xu, J. Ding, C. Song, W. Cai, C. Yan, Q. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202214828.
- 49H. Kwon, H. Kim, J. Hwang, W. Oh, Y. Roh, D. Shin, H.-T. Kim, Nat. Energy 2023, 9, 57–69.
- 50H.-J. Guo, H.-X. Wang, Y.-J. Guo, G.-X. Liu, J. Wan, Y.-X. Song, X.-A. Yang, F.-F. Jia, F.-Y. Wang, Y.-G. Guo, R. Wen, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 20752–20762.
- 51W.-W. Wang, Y. Gu, H. Yan, S. Li, J.-W. He, H.-Y. Xu, Q.-H. Wu, J.-W. Yan, B.-W. Mao, Chem 2020, 6, 2728–2745.
- 52J. Li, Y. Wang, S. Sun, Z. Zheng, Y. Gao, P. Shi, Y. Zhao, X. Li, Q. Li, X. Zhang, J. Huang, Adv. Energy Mater. 2024, 2403845.
- 53Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai, J.-M. Tarascon, B. Zhang, Joule 2021, 5, 1860–1872.
- 54Z. Ma, D. Ruan, D. Wang, Z. Lu, Z. He, J. Guo, J. Fan, J. Jiang, Z. Wang, X. Luo, J. Ma, Z. Zhang, Y. You, S. Jiao, R. Cao, X. Ren, Angew. Chem. Int. Ed. 2025, 64, e202414859.