Local Atomic Off-Centering Mediated Efficient Self-Trapped Excitonic Emission in Cs5Cu3Cl6I2 Nanoplates
Anustoop Das
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Jayita Pradhan
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorSimanta Kalita
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Kaushik Kundu
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Paribesh Acharyya
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorCorresponding Author
Prof. Sarit S. Agasti
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Kanishka Biswas
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAnustoop Das
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Jayita Pradhan
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorSimanta Kalita
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Kaushik Kundu
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorDr. Paribesh Acharyya
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Search for more papers by this authorCorresponding Author
Prof. Sarit S. Agasti
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Kanishka Biswas
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Cs5Cu3Cl6I2 nanoplates exhibit reasonably photostable and intense broadband sky-blue emission, originating from self-trapped excitons. The self-trapping of excitons occurs due to strong electron-phonon coupling, which is created by elastic structural distortion on the atomic scale. Synchrotron X-ray total scattering studies reveal the local structural distortion to be crafted by off-centering the copper atom.
Abstract
Cu(I)-based low-dimensional metal halides have received significant recognition attributable to their intriguing optoelectronic properties, which instigate the emergence of self-trapped excitons (STEs) accompanied by intense broadband emissions. However, fundamental crystal structural origin of such STE is still elusive. Herein, we have synthesized Cu(I)-based mixed halide, Cs5Cu3Cl6I2 nanoplates (NPs) using room temperature ligand-assisted reprecipitation method, which showed an intense blue emission with broad line-width, large Stokes shift, long photoluminescence lifetime, high photoluminescence quantum yield (PLQY) of ∼75%. Temperature-dependent PL intensity and line-width analysis unfolded strong exciton-phonon coupling in NP sample. Synchrotron X-ray pair distribution function analysis determines the local Cu off-centering, which provides the required lattice anharmonicity and softness for intense STE in Cs5Cu3Cl6I2 NPs. The existence of such soft lattice structure associated with low-energy phonons was verified by sound velocity, Raman spectroscopy and low-temperature heat capacity measurements. The fluorescence microscopy and super-resolution optical imaging were implemented at single-particle level which exhibited minimal temporal PL intermittency with reasonable photostability under high-intensity illumination. Accordingly, we hypothesize that the intense broadband emission of NPs are accompanied by the local atomic off-centering-driven lattice deformation during photo-excitation process.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202506404-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
anie202506404-sup-0002-SuppMat.avi107.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. A. Akkerman, G. Rainò, M. V. Kovalenko, L. Manna, Nat. Mater. 2018, 17, 394–405.
- 2G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, T. Stöferle, Nature 2018, 563, 671–675.
- 3P. Acharyya, T. Ghosh, K. Pal, K. S. Rana, M. Dutta, D. Swain, M. Etter, A. Soni, U. V. Waghmare, K. Biswas, Nat. Commun. 2022, 13, 5053.
- 4I. Maria, P. Acharyya, D. Voneshen, M. Dutta, A. Ahad, M. Etter, T. Ghosh, K. Pal, K. Biswas, Adv. Mater. 2024, 36, 2408008.
- 5S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391–402.
- 6L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171–1190.
- 7A. Dutta, S. K. Dutta, S. Das Adhikari, N. Pradhan, ACS Energy Lett. 2018, 3, 329–334.
- 8T. Qiu, Y. Hu, F. Xu, Z. Yan, F. Bai, G. Jia, S. Zhang, Nanoscale 2018, 10, 20963–20989.
- 9P. Acharyya, K. Pal, A. Ahad, D. Sarkar, K. S. Rana, M. Dutta, A. Soni, U. V. Waghmare, K. Biswas, Adv. Funct. Mater. 2023, 33, 2304607.
- 10E. R. Dohner, A. Jaffe, L. R. Bradshaw, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 13154–13157.
- 11J. Pradhan, A. Das, K. Kundu, Chahat, K. Biswas., Chem. Sci. 2022, 13, 9952–9959.
- 12J. Kundu, Y. Ghosh, A. M. Dennis, H. Htoon, J. A. Hollingsworth, Nano Lett. 2012, 12, 3031–3037.
- 13X. Peng, F. Song, E. Lu, Y. Wang, W. Zhou, J. Fan, Y. Gao, J. Am. Chem. Soc. 2005, 127, 4170–4171.
- 14D. Duan, C. Ge, M. Z. Rahaman, C.-H. Lin, Y. Shi, H. Lin, H. Hu, T. Wu, NPG Asia Mater 2023, 15, 8.
- 15Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, B. Ma, Nat. Commun. 2017, 8, 14051.
- 16A. Senocrate, G. Y. Kim, M. Grätzel, J. Maier, ACS Energy Lett. 2019, 4, 2859–2870.
- 17W. Xiang, S. F. Liu, W. Tress, Energy Environ. Sci. 2021, 14, 2090–2113.
- 18Q. Fan, G. V. Biesold-McGee, J. Ma, Q. Xu, S. Pan, J. Peng, Z. Lin, Angew. Chem. Int. Ed. 2020, 59, 1030–1046.
- 19B. M. Benin, D. N. Dirin, V. Morad, M. Wörle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, M. V. Kovalenko, Angew. Chem. Int. Ed. 2018, 57, 11329–11333.
- 20Z. Guo, J. Li, R. Pan, J. Cheng, R. Chen, T. He, Nanoscale 2020, 12, 15560–15576.
- 21Y. Hui, S. Chen, R. Lin, W. Zheng, F. Huang, Mater. Chem. Front. 2021, 5, 7088–7107.
- 22P. Cheng, L. Sun, L. Feng, S. Yang, Y. Yang, D. Zheng, Y. Zhao, Y. Sang, R. Zhang, D. Wei, Angew. Chem. Int. Ed. 2019, 58, 16087–16091.
- 23Y. Li, P. Vashishtha, Z. Zhou, Z. Li, S. B. Shivarudraiah, C. Ma, J. Liu, K. S. Wong, H. Su, J. E. Halpert, Chem. Mater. 2020, 32, 5515–5524.
- 24J. Li, T. Inoshita, T. Ying, A. Ooishi, J. Kim, H. Hosono, Adv. Mater. 2020, 32, 2002945.
- 25C. Jang, K. Kim, H.-W. Nho, S. M. Lee, H. Mubarok, J. H. Han, H. Kim, D. Lee, Y. Jang, M. H. Lee, O.-H. Kwon, S. K. Kwak, W. B. Im, M. H. Song, J. Park, Small 2023, 19, 2206668.
- 26T.-C. Wang, S.-Y. Yao, S.-P. Yan, J. Yu, Z.-Y. Deng, A. N. Yakovlev, B. Meng, J.-B. Qiu, X.-H. Xu, ACS Appl. Mater. Interfaces 2023, 15, 23421–23428.
- 27W. Bu, Y. Yan, P. Liu, T. Wang, S. Wang, Y. Yue, N. Zhu, X. Zhu, L. Yang, D. Mou, X. Yu, Chem. Eng. J. 2024, 492, 151908.
- 28Y. Nan, C. Wang, G. Zhang, Z. Kuang, W. Liu, M. Zhou, X. Zhang, S. Dai, P. Ran, X. Xu, Q. Chen, Y. Yang, L. Zhu, Q. Peng, N. Wang, J. Wang, Adv. Opt. Mater. 2024, 12, 2401158.
- 29X. Niu, J. Xiao, B. Lou, Z. Yan, Q. Zhou, T. Lin, C. Ma, X. Han, Ceram. Int. 2022, 48, 30788–30796.
- 30A. Das, K. Pal, P. Acharyya, S. Das, K. Maji, K. Biswas, J. Am. Chem. Soc. 2023, 145, 1349–1358.
- 31L. Pauling, J. Am. Chem. Soc. 1929, 51, 1010–1026.
- 32R. Pathak, S. Paul, S. Das, A. Das, S. K. Pati, K. Biswas, Angew. Chem. Int. Ed. 2024, 63, e202408908.
- 33B. Zhang, X. Wu, S. Zhou, G. Liang, Q. Hu, Front. Optoelectron. 2021, 14, 459–472.
- 34P. Vashishtha, T. J. Hooper, Y. Fang, D. Kathleen, D. Giovanni, M. Klein, T. C. Sum, S. G. Mhaisalkar, N. Mathews, T. White, Nanoscale 2021, 13, 59–65.
- 35Q. Li, Z. Chen, B. Yang, L. Tan, B. Xu, J. Han, Y. Zhao, J. Tang, Z. Quan, J. Am. Chem. Soc. 2020, 142, 1786–1791.
- 36T. D. Creason, A. Yangui, R. Roccanova, A. Strom, M.-H. Du, B. Saparov, Adv. Opt. Mater. 2020, 8, 1901338.
- 37F. Zhang, Z. Zhao, B. Chen, H. Zheng, L. Huang, Y. Liu, Y. Wang, A. L. Rogach, Adv. Opt. Mater. 2020, 8, 1901723.
- 38R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M.-H. Du, B. Saparov, ACS Mater. Lett. 2019, 1, 459–465.
- 39W. Lv, X. Tang, L. Li, L. Xu, M. Li, R. Chen, W. Huang, J. Phys. Chem. C 2019, 123, 24313–24320.
- 40L. Lian, M. Zheng, W. Zhang, L. Yin, X. Du, P. Zhang, X. Zhang, J. Gao, D. Zhang, L. Gao, G. Niu, H. Song, R. Chen, X. Lan, J. Tang, J. Zhang, Adv. Sci. 2020, 7, 2000195.
- 41Z. Ma, Z. Shi, C. Qin, M. Cui, D. Yang, X. Wang, L. Wang, X. Ji, X. Chen, J. Sun, D. Wu, Y. Zhang, X. J. Li, L. Zhang, C. Shan, ACS Nano 2020, 14, 4475–4486.
- 42Y. Toyozawa, Prog.Theo. Phys. 1962, 27, 89–104.
- 43J. A. Steele, P. Puech, M. Keshavarz, R. Yang, S. Banerjee, E. Debroye, C. W. Kim, H. Yuan, N. H. Heo, J. Vanacken, ACS Nano 2018, 12, 8081–8090.
- 44W. Jia, Q. Wei, S. Ge, C. Peng, T. Huang, S. Yao, Y. Tian, T. Chang, R. Zeng, B. Zou, J. Phys. Chem. C 2021, 125, 18031–18039.
- 45H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou, J. Phys. Chem. Lett. 2020, 11, 4703–4710.
- 46C. M. Iaru, A. Brodu, N. J. J. van Hoof, S. E. T. ter Huurne, J. Buhot, F. Montanarella, S. Buhbut, P. C. M. Christianen, D. Vanmaekelbergh, C. de Mello Donega, J. G. Rivas, P. M. Koenraad, A. Y. Silov, Nat. Commun. 2021, 12, 5844.
- 47V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, R. Steingrüber, Phys. Rev. B 2000, 61, 9944–9947.
- 48H. Zhao, H. Kalt, Phys. Rev. B 2003, 68, 125309.
- 49B. Yang, L. Yin, G. Niu, J.-H. Yuan, K.-H. Xue, Z. Tan, X.-S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, J. Tang, Adv. Mater. 2019, 31, 1904711.
- 50M. D. Smith, H. I. Karunadasa, Acc. Chem. Res. 2018, 51, 619–627.
- 51R. Kentsch, M. Morgenroth, M. Scholz, K. Xu, J. Schmedt auf der Günne, T. Lenzer, K. Oum, J. Phys. Chem. Lett. 2020, 11, 4286–4291.
- 52F. X. Morrissey, J. G. Mance, A. D. Van Pelt, S. L. Dexheimer, J. Condens.Matter Phys. 2013, 25, 144204
- 53D. Emin, T. Holstein, Phys. Rev. Lett. 1976, 36, 323–326.
- 54Z. Xing, Z. Zhou, G. Zhong, C. C. S. Chan, Y. Li, X. Zou, J. E. Halpert, H. Su, K. S. Wong, Adv. Funct. Mater. 2022, 32, 2207638.
- 55P. Klement, N. Dehnhardt, C.-D. Dong, F. Dobener, S. Bayliff, J. Winkler, D. M. Hofmann, P. J. Klar, S. Schumacher, S. Chatterjee, J. Heine, Adv. Mater. 2021, 33, 2100518.
- 56S. Rudin, T. Reinecke, B. Segall, Phys. Rev. B 1990, 42, 11218.
- 57A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, L. M. Herz, Nat. Commun. 2016, 7, 1–9.
- 58K. M. McCall, C. C. Stoumpos, O. Y. Kontsevoi, G. C. B. Alexander, B. W. Wessels, M. G. Kanatzidis, Chem. Mater. 2019, 31, 2644–2650.
- 59J. Pradhan, A. Das, A. Panda, K. Biswas, Chem. Mater. 2024, 36, 3405–3416.
- 60A. Elattar, H. Suzuki, R. Mishima, K. Nakao, H. Ota, T. Nishikawa, H. Inoue, A. K. K. Kyaw, Y. Hayashi, J. Mater. Chem. C 2021, 9, 3264–3270.
- 61J. Feng, APL Mater. 2014, 2, 081801.
- 62A. C. Ferreira, A. Létoublon, S. Paofai, S. Raymond, C. Ecolivet, B. Rufflé, S. Cordier, C. Katan, M. I. Saidaminov, A. A. Zhumekenov, O. M. Bakr, J. Even, P. Bourges, Phys. Rev. Lett. 2018, 121, 085502.
- 63H. Liu, J. Yang, X. Shi, S. A. Danilkin, D. Yu, C. Wang, W. Zhang, L. Chen, J. Mater. 2016, 2, 187–195.
- 64T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Rev. Mod. Phys. 2014, 86, 669–716.
- 65M. Baggioli, A. Zaccone, arXiv preprint arXiv:2008.01407 2020.
- 66M. T. Agne, R. Hanus, G. J. Snyder, Energy Environ. Sci. 2018, 11, 609–616.
- 67M. Gerhard, B. Louis, R. Camacho, A. Merdasa, J. Li, A. Kiligaridis, A. Dobrovolsky, J. Hofkens, I. G. Scheblykin, Nat. Commun. 2019, 10, 1698.
- 68M. H. J. J. Galle, J. Li, P. A. Frantsuzov, T. Basché, I. G. Scheblykin, Adv. Sci. 2023, 10, 2204393.
- 69N. Pathoor, A. Halder, A. Mukherjee, J. Mahato, S. K. Sarkar, A. Chowdhury, Angew. Chem. Int. Ed. 2018, 57, 11603–11607.
- 70T. Ahmed, S. Seth, A. Samanta, ACS Nano 2019, 13, 13537–13544.
- 71X. Tang, J. Yang, S. Li, Z. Liu, Z. Hu, J. Hao, J. Du, Y. Leng, H. Qin, X. Lin, Y. Lin, Y. Tian, M. Zhou, Q. Xiong, Adv. Sci. 2019, 6, 1900412.