Interweaving Covalent Organic Polymer Chains Into Two-Dimensional Networks: Synthesis, Single Crystal Structure, and Application for Stabilizing Lithium Metal Anode
Dr. Lizhong He
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorTuoya Naren
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Lei Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorDr. Fangyuan Kang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorJinglun Yang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorZihao Chen
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorProf. Aimin Yu
Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
Search for more papers by this authorProf. Dong-Sheng Li
College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Libao Chen
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qichun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077 P.R. China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorDr. Lizhong He
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorTuoya Naren
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Lei Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorDr. Fangyuan Kang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorJinglun Yang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorZihao Chen
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Search for more papers by this authorProf. Aimin Yu
Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
Search for more papers by this authorProf. Dong-Sheng Li
College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Libao Chen
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qichun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077 P.R. China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
A woven two-dimensional (2D) covalent organic polymer network (CityU-46) was designed, fabricated, and structurally resolved through single-crystal X-ray diffraction analysis, which revealed a unique, well-defined two-over, two-under interweaving pattern at the molecular level. CityU-46, serving as an artificial organic solid-electrolyte interphase layer on the surface of Li metal anodes, demonstrated excellent electrochemical performance in practical lithium metal cells.
Abstract
Macroscopic weaving has been proven to be the most enduring and effective method for manufacturing fabrics to meet the practical needs of humanity for thousands of years. However, the construction of molecular structures with exquisite topologies and specific properties based on molecular weaving is still in its infancy. Herein, we designed and fabricated a two-dimensional (2D) woven covalent organic polymer (COP) network (named as CityU-46) driven by the dative N→B bonds between the 1,4-bis(benzodioxa-borole)benzene (BACT) and 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (BPT). The complex woven topology of CityU-46 was determined using a single-crystal X-ray diffraction technique, revealing that it features a well-defined two-over and two-under interweaving pattern at the molecular level. Due to its structural merits, CityU-46 can be used as an artificial organic solid-electrolyte interphase layer on the surface of Li metal anodes, significantly improving the stability and long-term performance of lithium metal cells.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202506036-supp-0001-SuppMat.docx7.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Kovacevic, Tekstil 2008, 57, 344–351.
- 2R. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464.
- 3Y. Liu, M. O'Keeffe, M. M. J. Treacy, O. M. Yaghi, Chem. Soc. Rev. 2018, 47, 4642–4664.
- 4M. I. Misnon, M. M. Islam, J. A. Epaarachchi, K.-t. Lau, Mater. Des. 2014, 59, 359–368.
- 5S. Adanur, Handbook of Weaving, CRC Press, Boca Raton, FL 2020.
- 6S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460–1494.
10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 7T. Ciengshin, R. Sha, N. C. Seeman, Angew. Chem. Int. Ed. 2011, 50, 4419–4422.
- 8Z.-H. Zhang, B. J. Andreassen, D. P. August, D. A. Leigh, L. Zhang, Nat. Mater. 2022, 21, 275–283.
- 9J. F. Stoddart, Nano Lett. 2020, 20, 5597–5600.
- 10Q.-H. Guo, Y. Jiao, Y. Feng, J. F. Stoddart, CCS Chem. 2021, 3, 1542–1572.
- 11Y. Jiao, J. F. Stoddart, Matter 2021, 4, 2582–2584.
- 12L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247–289.
- 13G. R. Krishna, R. Devarapalli, G. Lal, C. M. Reddy, J. Am. Chem. Soc. 2016, 138, 13561–13567.
- 14J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125.
- 15S. Hayashi, S.-y. Yamamoto, D. Takeuchi, Y. Ie, K. Takagi, Angew. Chem. Int. Ed. 2018, 57, 17002–17008.
- 16B. J. Andreassen, Ph.D. thesis, The University of Manchester (United Kingdom) 2022.
- 17D. H. Busch, J. Inclusion Phenom. Mol. Recognit. Chem. 1992, 12, 389–395.
- 18Y. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gándara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga, P. Oleynikov, A. S. Alshammari, X. Zhang, O. Terasaki, O. M. Yaghi, Science 2016, 351, 365–369.
- 19X. Han, T. Ma, B. L. Nannenga, X. Yao, S. E. Neumann, P. Kumar, J. Kwon, Z. Rong, K. Wang, Y. Zhang, J. A. R. Navarro, R. O. Ritchie, Y. Cui, O. M. Yaghi, Chem 2023, 9, 2509–2517.
- 20U. Lewandowska, W. Zajaczkowski, S. Corra, J. Tanabe, R. Borrmann, E. M. Benetti, S. Stappert, K. Watanabe, N. A. K. Ochs, R. Schaeublin, C. Li, E. Yashima, W. Pisula, K. Müllen, H. Wennemers, Nat. Chem. 2017, 9, 1068–1072.
- 21D. P. August, R. A. W. Dryfe, S. J. Haigh, P. R. C. Kent, D. A. Leigh, J.-F. Lemonnier, Z. Li, C. A. Muryn, L. I. Palmer, Y. Song, G. F. S. Whitehead, R. J. Young, Nature 2020, 588, 429–435.
- 22E. Sheepwash, V. Krampl, R. Scopelliti, O. Sereda, A. Neels, K. Severin, Angew. Chem. Int. Ed. 2011, 50, 3034–3037.
- 23C.-H. Liu, L. Chen, H. Zhang, Y. Li, H. Lin, L. Li, J. Wu, C. Liu, Z.-M. Ye, S. Xiang, B. Chen, Z. Zhang, Chem 2023, 9, 3532–3543.
- 24Q. Dong, T. Naren, L. Zhang, W. Jiang, M. Xue, X. Wang, L. Chen, C.-S. Lee, Q. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202405426.
- 25H. Lin, H. Zhang, Y. Li, F. Yuan, X. Zheng, L. He, L. Li, Y. Zhang, S. Xiang, B. Chen, Z. Zhang, Angew. Chem. Int. Ed. 2024, 60, e202415968.
- 26L. Zhang, Z. Chen, X.-X. Li, X. Wang, Q. Gu, X. Wang, C.-S. Lee, Y.-Q. Lan, Q. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202411018.
- 27X. Sheng, Z. Wang, G. Sheng, C. Zhu, D. Xiao, T. Shan, X. Xiao, M. Liu, G. Li, Y. Zhu, J. L. Sessler, F. Huang, J. Am. Chem. Soc. 2024, 146, 12547–12555.
- 28L. He, L. Zhang, J. Yang, F. Kang, X. Wang, Q. Gu, D.-S. Li, L. Jiang, Q. Zhang, Small Struct. 2024, 6, 2400492.
- 29M. Xue, L. Zhang, X. Wang, Q. Dong, Z. Zhu, X. Wang, Q. Gu, F. Kang, X.-X. Li, Q. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202315338.
- 30F. Yuan, G. Han, C. Chen, X. Fan, S. Xiang, Z. Zhang, Angew. Chem. Int. Ed. 2025, e202501875.
- 31T. Shan, L. Chen, D. Xiao, X. Xiao, J. Wang, X. Chen, Q.-H. Guo, G. Li, J. F. Stoddart, F. Huang, Angew. Chem. Int. Ed. 2024, 63, e202317947.
- 32Y. Sun, B. Zhang, C. Zhang, H. Lu, Y. Yang, B. Han, F. Dong, J. Lv, S. Zhang, Z. Li, Z. Lei, H. Ma, ACS Appl. Mater. Interfaces 2023, 15, 4569–4579.
- 33B. Liu, P. Guo, X. Guan, X. Tian, F. Du, W. Xie, H.-L. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202405027.
- 34B. Chen, F. Jäkle, Angew. Chem. Int. Ed. 2024, 63, e202313379.
- 35F. Li, X. Xiao, Q. Xu, Chem 2023, 9, 13–15.
- 36M. Xue, J. Yang, F. Kang, X. Wang, Q. Zhang, J. Mater. Chem. C 2022, 10, 17027–17047.
- 37A. Dhara, F. Beuerle, Chem.-Eur. J. 2015, 21, 17391–17396.
- 38G. Campillo-Alvarado, K. P. D'mello, D. C. Swenson, S. V. Santhana Mariappan, H. Höpfl, H. Morales-Rojas, L. R. Macgillivray, Angew. Chem. Int. Ed. 2019, 58, 5413–5416.
- 39J. Wu, J. Liu, L. Rao, Y. Long, Q. Gu, X. Wang, L. Zhang, F. Kang, L. Jiang, D. Lei, Q. Zhang, Inorg. Chem. Front. 2024, 11, 8285–8289.
- 40Z.-H. Zhao, C.-H. Li, J.-L. Zuo, SmartMat 2023, 4, e1187.
- 41E. C. Vargas-Olvera, F. J. Salas-Sánchez, A. Colin-Molina, S. Pérez-Estrada, B. Rodríguez-Molina, J. Alejandre, G. Campillo-Alvarado, L. R. MacGillivray, H. Höpfl, Crys. Growth Des. 2022, 22, 570–584.
- 42H. Zhang, Y. Li, L. Chen, Y. Yang, H. Lin, S. Xiang, B. Chen, Z. Zhang, Chem 2023, 9, 242–252.
- 43W. Wang, L. Wang, F. Du, G.-D. Wang, L. Hou, Z. Zhu, B. Liu, Y.-Y. Wang, Chem. Sci. 2023, 14, 533–539.
- 44X. Xiao, D. Xiao, G. Sheng, T. Shan, J. Wang, X. Miao, Y. Liu, G. Li, Y. Zhu, J. L. Sessler, F. Huang, Sci. Adv. 2023, 9, eadi1169.
- 45X. Wang, L. Zhang, X. Wang, T. Cheng, M. Xue, Q. Dong, Y. Peng, Q. Zhang, Adv. Funct. Mater. 2024, 2401362 https://doi.org/10.1002/adfm.202401362.
- 46X. Wang, Y. Zhang, L. Zhang, Q. Gu, Q. Liu, Y. Ren, C. S. Lee, Q. Zhang, Chem. Sci. 2024, 15, 20397–20402.
- 47J. Yang, F. Kang, X. Wang, Q. Zhang, Mater. Horiz. 2022, 9, 121–146.
- 48N. Luisier, K. Bally, R. Scopelliti, F. T. Fadaei, K. Schenk, P. Pattison, E. Solari, K. Severin, Crys. Growth Des. 2016, 16, 6600–6604.
- 49A. J. Stephens, R. Scopelliti, F. F. Tirani, E. Solari, K. Severin, ACS Mater. Lett. 2019, 1, 3–7.
- 50M. Rondelli, J. Pasán, I. Fernández, T. Martín, Chem.-Eur. J. 2024, 30, e202400896.
- 51D. Xiao, Z. Jin, G. Sheng, L. Chen, X. Xiao, T. Shan, J. Wang, R. Navik, J. Xu, L. Zhou, Q.-H. Guo, G. Li, Y. Zhu, J. F. Stoddart, F. Huang, Nat. Chem. 2024, 16, 1906–1914.
- 52C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525–5534.
- 53S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 2002, 124, 104–112.
- 54M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 2004, 126, 7690–7697.
- 55L. He, Z. Gan, N. Xia, L. Liao, Z. Wu, Angew. Chem. Int. Ed. 2019, 58, 9897–9901.
- 56L. He, X. He, J. Wang, C. Fu, J. Liang, Inorg. Chem. 2021, 60, 8404–8408.
- 57E. Cha, M. D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, Nat. Nanotechnol. 2018, 13, 337–344.
- 58C. Li, S. Liu, C. Shi, G. Liang, Z. Lu, R. Fu, D. Wu, Nat. Commun. 2019, 10, 1363.
- 59X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040–3071.
- 60Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, Y. Cui, Adv. Mater. 2017, 29, 1605531.
- 61J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar, Y. Wu, J.-Y. Hwang, M. N. Hedhili, L. Cavallo, Y.-K. Sun, L.-J. Li, ACS Energy Lett. 2018, 3, 335–340.
- 62R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W.-H. Zhang, Y. Zhou, Q. Qiao, Adv. Energy Mater. 2019, 9, 1901486.
- 63D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, Z. Chen, Chem. Soc. Rev. 2020, 49, 5407–5445.
- 64T. Naren, R. Jiang, G.-c. Kuang, L. Zhou, L. Chen, ChemSusChem 2024, 17, e202301228.
- 65T. Naren, R. Jiang, P. Qing, S. Huang, C. Ling, J. Lin, W. Wei, X. Ji, Y. Chen, Q. Zhang, G.-C. Kuang, L. Chen, ACS Nano 2023, 17, 20315–20324.
- 66S. Li, X.-S. Wang, Q.-D. Li, Q. Liu, P.-R. Shi, J. Yu, W. Lv, F. Kang, Y.-B. He, Q.-H. Yang, J. Mater. Chem. A 2021, 9, 7667–7674.
- 67C. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang, L. Luo, C. Wang, D. Mei, J. Meng, X. Wang, Z. Liu, L. Mai, J. Liu, Nat. Nanotechnol. 2019, 14, 594–601.
- 68T. Chen, F. Meng, Z. Zhang, J. Liang, Y. Hu, W. Kong, X. L. Zhang, Z. Jin, Nano Energy 2020, 76, 105068.
- 69P. Shi, X.-Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806.