Boron Doping-Induced Ultrahigh Ce3+ Ratio in Amorphous CeO2/GO Catalyst for Low-Concentration CO2 Photoreduction
Yanhong Li
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
These authors contributed equally to this work.
Search for more papers by this authorQian Yin
School of Physics, Beihang University, Beijing, 100191 China
These authors contributed equally to this work.
Search for more papers by this authorBinbin Jia
School of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
These authors contributed equally to this work.
Search for more papers by this authorHuiqing Wang
School of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
These authors contributed equally to this work.
Search for more papers by this authorHongfei Gu
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Search for more papers by this authorQi Hu
School of Physics, Beihang University, Beijing, 100191 China
Search for more papers by this authorHaosen Yang
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Tianqi Guo
International Institute for Interdisciplinary and Frontiers, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Pengfei Hu
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Research Institute of Aero-Engine, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lidong Li
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Li-Min Liu
School of Physics, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lin Guo
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYanhong Li
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
These authors contributed equally to this work.
Search for more papers by this authorQian Yin
School of Physics, Beihang University, Beijing, 100191 China
These authors contributed equally to this work.
Search for more papers by this authorBinbin Jia
School of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
These authors contributed equally to this work.
Search for more papers by this authorHuiqing Wang
School of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
These authors contributed equally to this work.
Search for more papers by this authorHongfei Gu
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Search for more papers by this authorQi Hu
School of Physics, Beihang University, Beijing, 100191 China
Search for more papers by this authorHaosen Yang
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Tianqi Guo
International Institute for Interdisciplinary and Frontiers, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Pengfei Hu
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
Research Institute of Aero-Engine, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lidong Li
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Li-Min Liu
School of Physics, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lin Guo
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This study introduces a novel strategy to synthesize amorphous CeO2/GO with an exceptionally high Ce3+ ratio of 85.7% through B-doping. The resulting amorphous structure reduces the band gap, enhances charge separation efficiency, and significantly boosts diluted CO2 photocatalytic activity. The material achieves remarkable CO2-to-CO conversion rates of 249.33 µmol g−1 h−1(under 15% CO2) and 103.4 µmol g−1 h−1(under 1% CO2) with 100% selectivity, highlighting its potential for sustainable CO2 conversion.
Abstract
Direct utilization of diluted CO2 enables sustainable CO2 conversion into valuable products, with reduced CeO2 emerging as an attractive candidate due to its exceptional redox flexibility. The catalytic efficacy of CeO2 is intimately tied to the electronic structure of 4f, yet the persistent challenge lies in maintaining a high and stable concentration of Ce3+. In this study, we propose a symmetry-breaking-induced amorphization strategy to achieve an exceptionally high Ce3+ ratio by B doping, which facilitates the reduction of Ce4+ to Ce3+ in amorphous CeO2. First-principles calculations and infrared spectroscopy reveal that B doping with three excess electrons induces the formation of planar triangular B–O₃ units by disrupting the original high-symmetry structure of CeO2, facilitating the spontaneous transition to the amorphous phase. Electronic structure analysis confirms that even a modest 7.5% B doping can significantly elevate the Ce3+ ratio to 85.7%. The resulting amorphous B-doped CeO2/GO shows a remarkable CO2-to-CO conversion rate of 249.33 µmol g−1 h−1(under 15% CO2) and 103.4 µmol g−1 h−1(under 1% CO2), with 100% selectivity in both cases. This performance highlights how amorphization stabilizes defect states, making amorphous CeO2/GO with high Ce3+ an effective material for CO2 photoreduction and addressing key challenges in CO2 capture and utilization.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
anie202505668-supp-0001-SuppMat.docx18 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G. A. Ozin, Y. H. Hu, Nat. Rev. Method. Prime. 2023, 3, 61.
- 2M. A. A. Mahbub, D. Das, X. Wang, G. Lu, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2024, 23, e202419775.
- 3C. Chen, J. F. K. Kotyk, S. W. Sheehan, Chem 2018, 4, 2571–2586.
- 4Z. Jiang, X. H. Xu, Y. H. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Y. Peng, L. Zan, H. X. Deng, Nature 2020, 586, 549–554.
- 5M. L. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828.
- 6Q. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438–1511.
- 7W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, A. Steinfeld, Science 2010, 330, 1797–1801.
- 8X. D. Li, Y. F. Sun, J. Q. Xu, Y. J. Shao, J. Wu, X. L. Xu, Y. Pan, H. X. Ju, J. F. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699.
- 9F. Y. Xu, K. Meng, B. Cheng, S. Y. Wang, J. S. Xu, J. G. Yu, Nat. Commun. 2020, 11, 4613.
- 10Y. Yamazaki, M. Miyaji, O. Ishitani, J. Am. Chem. Soc. 2022, 144, 6640–6660.
- 11M. Dong, J.-X. Gu, C.-Y. Sun, X.-L. Wang, Z.-M. Su, Chem. Commun. 2022, 58, 10114–10126.
- 12J. M. Yu, L. H. Xie, J. R. Li, Y. G. Ma, J. M. Seminario, P. B. Balbuena, Chem. Rev. 2017, 117, 9674–9754.
- 13T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 2016, 116, 5987–6041.
- 14M. N. Chu, L. T. H. Nguyen, M. X. Truong, T. H. Do, T. T. A. Duong, L. T. T. Nguyen, M. A. Pham, T. K. N. Tran, T. C. Q. Ngo, V. H. Pham, Toxics 2022, 10, 463.
- 15C. W. Yang, X. J. Yu, S. Heissler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. M. Wang, C. Wöll, Angew. Chem. Int. Ed. 2017, 56, 375–379.
- 16T. Naganuma, E. Traversa, Nanoscale 2012, 4, 4950.
- 17R. Ma, S. Zhang, T. Wen, P. C. Gu, L. Li, G. X. Zhao, F. L. Niu, Q. F. Huang, Z. W. Tang, X. K. Wang, Catal. Today 2019, 335, 20–30.
- 18X. Chen, S. Lv, H. Gu, H. Cui, G. Liu, Y. Liu, Z. Li, Z. Xu, J. Kang, G. Teobaldi, J. Am. Chem. Soc. 2024, 146, 13527–13535.
- 19J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu, L. Guo, Chem. Rev. 2023, 123, 8859–8941.
- 20Y. S. Rammah, M. I. Sayyed, A. S. Abohaswa, H. O. Tekin, Appl. Phys. A 2018, 124, 6501–6509.
- 21T. A. Taha, A. S. Abouhaswa, J. Mater. Sci.-Mater. Electron. 2018, 29, 8100–8106.
- 22B. W. Lu, T. Zhang, L. Q. Zhang, Y. Q. Xu, Z. W. Zhang, F. Wu, X. S. Li, C. Luo, Appl. Surf. Sci. 2022, 587, 152881.
- 23H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987–1992.
- 24E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Surf. Interface Anal. 2008, 40, 264–267.
- 25C. Liu, L. Gui, J.-J. Zheng, Y.-Q. Xu, B. Song, L. Yi, Y. Jia, A. Taledaohan, Y. Wang, X. Gao, Z.-Y. Qiao, H. Wang, Z. Tang, J. Am. Chem. Soc. 2023, 145, 19086–19097.
- 26F. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 2002, 195, 236–250.
- 27L. Artiglia, F. Orlando, K. Roy, R. Kopelent, O. Safonova, M. Nachtegaal, T. Huthwelker, J. van Bokhoven, J. Phys. Chem. Lett. 2017, 8, 102–108.
- 28V. K. Paidi, D. L. Brewe, J. W. Freeland, C. A. Roberts, J. van Lierop, Phys. Rev. B 2019, 99, 180403.
- 29L. A. J. Garvie, P. R. Buseck, J. Phys. Chem. Solids 1999, 60, 1943–1947.
- 30D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, G. S. Henderson, J. Non-Cryst. Solids 2013, 378, 258–264.
- 31P. Eriksson, A. A. Tal, A. Skallberg, C. Brommesson, Z. Hu, R. D. Boyd, W. Olovsson, N. Fairley, I. A. Abrikosov, X. Zhang, K. Uvdal, Sci. Rep. 2018, 8, 6999.
- 32J. Liu, Y. Liu, N. Y. Liu, Y. Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. H. Kang, Science 2015, 347, 970–974.
- 33Y. Yang, H. Y. Zhang, Y. Wang, L. H. Shao, L. Fang, H. Dong, M. Lu, L. Z. Dong, Y. Q. Lan, F. M. Zhang, Adv. Mater. 2023, 35, e2304170.
- 34X. Wang, B. Y. Liu, S. Q. Ma, Y. J. Zhang, L. Z. Wang, G. Q. Zhu, W. Huang, S. C. Wang, Nat. Commun. 2024, 15, 2600.
- 35Z. Dai, G. Wang, F. Xiao, D. Lei, X. Dou, Adv. Mater. 2023, 35, e2300526.
- 36Y. J. Ma, S. J. Wang, X. G. Duan, Chem. Eng. J. 2023, 455, 140654.
- 37H. Dong, L. Fang, K. X. Chen, J. X. Wei, J. X. Li, X. Qiao, Y. Wang, F. M. Zhang, Y. Q. Lan, Angew. Chem. Int. Ed. 2024, 64, e202414287.
- 38Y. Wang, J.-X. Wei, H.-L. Tang, L.-H. Shao, L.-Z. Dong, X.-Y. Chu, Y.-X. Jiang, G.-L. Zhang, F.-M. Zhang, Y.-Q. Lan, Nat. Commun. 2024, 15, 8818.
- 39R.-G. Yang, Y.-M. Fu, H.-N. Wang, D.-P. Zhang, Z. Zhou, Y.-Z. Cheng, X. Meng, Y.-O. He, Z.-M. Su, Chem. Eng. J. 2022, 450, 138040.
- 40H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang, R. Wang, Adv. Funct. Mater. 2020, 30, 2002654.
- 41L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K. H. Chu, P. K. Wong, Appl. Catal. B 2016, 187, 281–290.
- 42Y. Song, X. Li, H. Li, L. Wang, S. Xiao, H. Fei, G. Li, X. Song, Appl. Catal. B 2025, 363, 124816.
- 43Z. Liu, H. Yin, J. Sun, L. Bai, Z. Li, X. Zhao, X. Yan, M. Zhao, L. Jing, Adv. Energy Mater. 2024, 14, 2401713.
- 44B. Han, J. Song, S. Liang, W. Chen, H. Deng, X. Ou, Y.-J. Xu, Z. Lin, Appl. Catal. B. 2020, 260, 118208.
- 45N.-Y. Huang, J.-Q. Shen, X.-W. Zhang, P.-Q. Liao, J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2022, 144, 8676–8682.
- 46S. Kar, D. Kim, A. B. Annuar, B. B. Sarma, M. Stanton, E. Lam, S. Bhattacharjee, S. Karak, H. F. Greer, E. Reisner, Nat. Energy 2025, DOI: 10.1038/s41560-025-01714-y.
- 47D. P. H. Tran, M. T. Pham, X. T. Bui, Y. F. Wang, S. J. You, Sol. Energy. 2022, 240, 443–466.
- 48W. Lyu, Y. Liu, J. Y. Zhou, D. T. Chen, X. Zhao, R. Q. Fang, F. L. Wang, Y. W. Li, Angew. Chem. Int. Ed. 2023, 62, p. 202310733.
- 49J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang, Y. Yan, Y. Chen, J. Liu, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2022, 13, 4681.