Kelvin Probe Force Microscopy Reveals Spatially Resolved Charge-Transfer Mechanism in CdS/BiOBr S-scheme Heterojunction Photocatalyst
Zheng Meng
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorJianjun Zhang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorHaoyu Long
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorProf. Hermenegildo García
Instituto Universitario de Tecnología Química, (CSIC-UPV), Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorCorresponding Author
Prof. Liuyang Zhang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Bicheng Zhu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jiaguo Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorZheng Meng
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorJianjun Zhang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorHaoyu Long
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
Search for more papers by this authorProf. Hermenegildo García
Instituto Universitario de Tecnología Química, (CSIC-UPV), Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorCorresponding Author
Prof. Liuyang Zhang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Bicheng Zhu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jiaguo Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
In situ KPFM reveals charge-transfer mechanism in CdS/BiOBr S-scheme heterojunctions. Upon light illumination, the Fermi level (Ef) of n-type semiconductors rises, generating a built-in electric field that drives photogenerated carrier separation. Electrons accumulate on CdS, lowering its surface photovoltage (SPV), while holes accumulate on BiOBr, elevating its SPV above that of the bare semiconductors, highlighting efficient charge separation.
Abstract
S-scheme heterojunctions hold great promise for photocatalysis, yet a comprehensive understanding of their charge-transfer mechanisms remains limited. While time-resolved techniques have provided valuable insights, the spatial resolution of charge transfer at the material surface remains underexplored. Here, we employ Kelvin probe force microscopy (KPFM) to investigate the charge-transfer dynamics in S-scheme heterojunctions, revealing spatially resolved details. Our findings show that upon illumination, the Fermi level (Ef) of n-type semiconductors increases, but a built-in electric field (IEF) persists within the heterojunction. Electrons accumulate on the surface of the reduction semiconductor (RS), resulting in a surface photovoltage (SPV) lower than that of the individual semiconductor, while holes accumulate on the oxidation semiconductor (OS) surface, producing an SPV higher than that of the bare material. The S-scheme heterojunction leads to a remarkable increase in charge separation, with 11 additional photogenerated electrons and 3722 additional holes compared to the bare CdS and BiOBr. These results offer critical insights into the spatially resolved charge-transfer mechanisms of S-scheme heterojunctions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505456-sup-0001-SupMat.docx9.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Wu, J. Zhang, X. Tong, P. Yu, J.-Y. Xu, J. Wu, Z. M. Wang, J. Lou, Y.-L. Chueh, Small 2019, 15, 1900578.
- 2M. Sayed, J. Yu, G. Liu, M. Jaroniec, Chem. Rev. 2022, 122, 10484–10537.
- 3S. Naghdi, A. Cherevan, A. Giesriegl, R. Guillet-Nicolas, S. Biswas, T. Gupta, J. Wang, T. Haunold, B. C. Bayer, G. Rupprechter, M. C. Toroker, F. Kleitz, D. Eder, Nat. Commun. 2022, 13, 282.
- 4J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Chem. Eng. J. 2022, 439, 135758.
- 5H. Feng, C. Zhang, M. Luo, Y. Hu, Z. Dong, S. Xue, P. K. Chu, Nanoscale 2022, 14, 16303–16313.
- 6T. Fazal, A. Razzaq, F. Javed, A. Hafeez, N. Rashid, U. S. Amjad, M. S. Ur Rehman, A. Faisal, F. Rehman, J. Hazard. Mater. 2020, 390, 121623.
- 7M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci. Technol. 2022, 122, 231–242.
- 8Y. Zhang, J. Qiu, B. Zhu, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 2022, 444, 136584.
- 9J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B-Environ. 2019, 243, 556–565.
- 10S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys.-Chim. Sin. 2024, 40, 2307016.
- 11Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys.-Chim. Sin. 2024, 40, 2406027.
- 12X. Xu, S. Dai, S. Xu, Q. Zhu, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202309066.
- 13B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 2024, 36, 2310600.
- 14A. Kumar, A. Khosla, S. K. Sharma, P. Dhiman, G. Sharma, L. Gnanasekaran, M. Naushad, F. J. Stadler, Fuel 2023, 333, 126267.
- 15Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 2020, 6, 1543–1559.
- 16A. Shawky, R. M. Mohamed, J. Environ. Chem. Eng. 2022, 10, 108249.
- 17J. Yan, L. Wei, Acta Phys.-Chim. Sin. 2024, 40, 2312024.
- 18Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chinese J. Catal. 2023, 53, 123–133.
- 19C. Luo, Q. Long, B. Cheng, B. Zhu, L. Wang, Acta Phys.-Chim. Sin. 2023, 39, 2212026.
- 20L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 2022, 34, 2107668.
- 21A. Raza, A. A. Haidry, Z. Yao, T. Amin, M. Ahsan, R. A. Alshgari, S. Mohammad, Int. J. Hydrogen Energy 2024, 83, 421–431.
- 22K. N. Van, H. T. Huu, V. N. Nguyen Thi, T.-L. T. Le, Q. D. Hoang, Q. V. Dinh, V. Vo, D. L. Tran, Y. Vasseghian, Environ. Res. 2022, 206, 112556.
- 23Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chinese J. Catal. 2023, 52, 32–49.
- 24K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 2024, 36, 2406460.
- 25B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 2024, 67, 424–443.
- 26L. Li, D. Ma, Q. Xu, S. Huang, Chem. Eng. J. 2022, 437, 135153.
- 27B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chinese J. Catal. 2023, 51, 204–215.
- 28C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 2023, 62, e202218688.
- 29F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 2025, 64, e202414672.
- 30X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 2024, 15, 4807.
- 31X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 2024, 67, 444–472.
- 32H. S. Moon, K.-C. Hsiao, M.-C. Wu, Y. Yun, Y.-J. Hsu, K. Yong, Adv. Mater. 2023, 35, 2200172.
- 33C. Kai, X. Sun, Y. Jia, K. Jiang, Z. Shi, J. Ben, Y. Wu, Y. Wang, D. Li, J. Phys. D: Appl. Phys. 2020, 53, 235104.
- 34R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich, R. Liu, Y. Liu, Y. Zhao, S. Pang, H. An, C. Ni, P. Zhou, K. Han, F. Fan, C. Li, Nature 2022, 610, 296–301.
- 35C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 2021, 33, 2100317.
- 36C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 2024, 173, 11–19.
- 37J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Angew. Chem. Int. Ed. 2015, 54, 9111–9114.
- 38R. Chen, F. Fan, T. Dittrich, C. Li, Chem. Soc. Rev. 2018, 47, 8238–8262.
- 39H. Hu, T. Wang, L. Peng, X. Ling, Y. He, M. Sun, M. Yang, C. Deng, Appl. Phys. A 2022, 128, 452.
- 40Y. Huang, J. Zhang, K. Dai, C. Liang, G. Dawson, Ceram. Int. 2022, 48, 8423–8432.
- 41Y. Xiao, H. Maimaitizi, K. Okitsu, Y. Tursun, A. Abulizi, Part. Part. Syst. Charact. 2022, 39, 2200019.
- 42Z. Dong, J. Zhou, Z. Zhang, Y. Jiang, R. Zhou, C. Yao, ACS Appl. Energy Mater. 2022, 5, 10076–10085.
- 43N. E. Fard, H. Pasdar, M. T. Yaraki, Mater. Today Sustain. 2024, 28, 100961.
- 44Y. Jiang, Y. Wang, Z. Zhang, Z. Dong, J. Xu, Inorg. Chem. 2022, 61, 10557–10566.
- 45Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, S. Wageh, A. A. Al-Ghamdi, Chinese J. Catal. 2022, 43, 1657–1666.
- 46D. Majhi, K. Das, A. Mishra, R. Dhiman, B. G. Mishra, Appl. Catal. B-Environ. 2020, 260, 118222.
- 47Y. Feng, Y. Tao, J. Qu, Y. Zhang, Chem. Eng. J. 2023, 472, 145053.
- 48B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 2023, 162, 90–98.
- 49J. Zhang, G. Yang, B. He, B. Cheng, Y. Li, G. Liang, L. Wang, Chinese J. Catal. 2022, 43, 2530–2538.
- 50Z. Chen, Q. Zhang, Y. Luo, Angew. Chem. Int. Ed. 2018, 57, 5320–5324.
- 51Z. Meng, J. Zhang, C. Jiang, C. Trapalis, L. Zhang, J. Yu, Small 2024, 20, 2308952.
- 52I. Sharma, B. Mehta, Nanotechnology 2017, 28, 445701.
- 53R. Singh, A. Dutta, P. Nandi, S. K. Srivastava, T. Som, Appl. Surf. Sci. 2019, 493, 577–586.
- 54H. Su, H. Lou, Z. Zhao, L. Zhou, Y. Pang, H. Xie, C. Rao, D. Yang, X. Qiu, Chem. Eng. J. 2022, 430, 132770.
- 55J. Zhang, K. Liu, B. Zhang, J. Zhang, M. Liu, Y. Xu, K. Shi, H. Wang, Z. Zhang, P. Zhou, G. Ma, J. Am. Chem. Soc. 2024, 146, 4068–4077.
- 56T. Wei, Y.-N. Zhu, Z. Gu, X. An, L.-m. Liu, Y. Wu, H. Liu, J. Tang, J. Qu, Nano Energy 2018, 51, 764–773.
- 57L. Yuan, C. Tang, P. Du, J. Li, C. Zhang, Y. Xi, Y. Bi, T. Bao, A. Du, C. Liu, C. Yu, Angew. Chem. Int. Ed. 2024, 63, e202412340.
- 58Y. You, S. Chen, J. Zhao, J. Lin, D. Wen, P. Sha, L. Li, D. Bu, S. Huang, Adv. Mater. 2024, 36, 2307962.
- 59H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, H. Shin, Nano Lett. 2014, 14, 4413–4417.
- 60T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Appl. Surf. Sci. 2019, 470, 196–204.
- 61C. G. B. Garrett, W. H. Brattain, Phys. Rev. 1955, 99, 376–387.
- 62Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 2023, 162, 1–10.