Designing Low-Cost High-Conductivity and Nonflammable Phosphate Electrolytes Toward High-Energy Sodium-Ion Batteries
Mengchuang Liu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorFenfen Ma
GuSu Laboratory of Materials, Suzhou, Jiangsu, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorWei Liu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Ziqi Zeng
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYuanke Wu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. Xin Chen
Suzhou Laboratory, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorProf. Shijie Cheng
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Jia Xie
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMengchuang Liu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorFenfen Ma
GuSu Laboratory of Materials, Suzhou, Jiangsu, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorWei Liu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Ziqi Zeng
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYuanke Wu
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. Xin Chen
Suzhou Laboratory, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorProf. Shijie Cheng
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Jia Xie
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Evaluating the synergetic effect of dielectric constant (DC) and binding energy (Ea) of solvents on the interaction between Na+ and anion balances stable interfacial chemistry and high ionic conductivity in non-flammable phosphate electrolytes. Developed electrolytes enable high-energy pouch cell achieving a capacity retention of 87.1% after 700 cycles at the current density of 2C.
Abstract
Safety hazard induced by flammable electrolytes are troubling the advancement of practical sodium-ion batteries (SIBs). Non-flammable phosphate electrolytes are competent to address this issue, yet current designs struggle to balance the interfacial chemistry and high ionic conductivity due to the untamed interaction between Na+ and anion. Herein, we evaluate the effect of dielectric constant (DC) and binding energy (Ea) of solvents on this interaction, revealing a systematic approach to achieve desired designs. It is shown that incorporating solvents with high DC and moderate Ea forms anion-rich solvation structure for stabilizing the anode interface and achieving necessary salt dissociation for high ionic conductivity. Specifically, propylene carbonate is incorporated as the eligible solvent into triethyl phosphate, affording non-flammable electrolytes with low cost and high ionic conductivity of 6.22 mS cm−1. Consequently, 1.25 Ah hard carbon (HC)|NaNi1/3Fe1/3Mn1/3O2 (NFM) pouch cell delivers a high-power discharge of 5C rate and maintains an impressive capacity retention of 87.1% after 700 cycles at 2C rate. Moreover, 6.61 Ah HC|NFM pouch cell with 152.3 Wh kg−1 avoids smoke production and volume expansion during nail penetration. This work discloses an advanced strategy for deigning practical phosphate electrolytes, paving the way for developing high-performance SIBs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202502745-sup-0001-SuppMat.docx20.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Lu, R. Li, M. M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. Xiao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang, X. Fan, Nature 2024, 627, 101–107.
- 2H. Zhang, Z. Zeng, S. Cheng, J. Xie, eScience 2024, 4, 100265.
- 3Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng, Y. Li, P. Ombrini, J. Zhao, Z. Chen, Y. Niu, X. Qi, F. Xie, R. van der Jagt, S. Ganapathy, M.-M. Titirici, H. Li, L. Chen, M. Wagemaker, Y.-S. Hu, Nat. Energy 2024, 9, 134–142.
- 4W. Liu, M. Liu, F. Ma, M. Qin, W. Zhong, X. Chen, Z. Zeng, S. Cheng, J. Xie, Sci. Bull. 2024, 69, 1697–1705.
- 5Q. Wu, W. Zhang, M. Qin, W. Zhong, H. Yan, H. Zhu, S. Cheng, J. Xie, Nano Energy 2024, 129, 110049.
- 6X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang, G. Zeng, Y. Tang, Z. Huang, I. Hwang, H. Zhang, S. Zhou, Y. Qiu, Y. Xiao, J. Cabana, C.-J. Sun, K. Amine, Y. Sun, Q. Wang, G.-L. Xu, L. Gu, Y. Qiao, S.-G. Sun, Nat. Energy 2024, 9, 184–196.
- 7Y.-Y. Zhang, C.-H. Zhang, Y.-J. Guo, M. Fan, Y. Zhao, H. Guo, W.-P. Wang, S.-J. Tan, Y.-X. Yin, F. Wang, S. Xin, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2023, 145, 25643–25652.
- 8C. Liu, K. Chen, H. Xiong, A. Zhao, H. Zhang, Q. Li, X. Ai, H. Yang, Y. Fang, Y. Cao, eScience 2024, 4, 100186.
- 9X. Deng, Y. Huang, Y. Han, J. Du, J. Tian, Y. Li, Y. Yu, Y. Shen, Y. Huang, Angew. Chem. Int. Ed. 2024, 63, e202412222.
- 10Y. Yang, W. Yang, H. Yang, H. Zhou, eScience 2023, 3, 100170.
- 11Z. Tang, H. Wang, P.-F. Wu, S.-Y. Zhou, Y.-C. Huang, R. Zhang, D. Sun, Y.-G. Tang, H.-Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202200475.
- 12Y. Yang, Z. Wang, C. Du, B. Wang, X. Li, S. Wu, X. Li, X. Zhang, X. Wang, Y. Niu, F. Ding, X. Rong, Y. Lu, N. Zhang, J. Xu, R. Xiao, Q. Zhang, X. Wang, W. Yin, J. Zhao, L. Chen, J. Huang, Y.-S. Hu, Science 2024, 385, 744–752.
- 13Y. Tang, Q. Zhang, W. Zuo, S. Zhou, G. Zeng, B. Zhang, H. Zhang, Z. Huang, L. Zheng, J. Xu, W. Yin, Y. Qiu, Y. Xiao, Q. Zhang, T. Zhao, H.-G. Liao, I. Hwang, C.-J. Sun, K. Amine, Q. Wang, Y. Sun, G.-L. Xu, L. Gu, Y. Qiao, S.-G. Sun, Nat. Sustain. 2024, 7, 348–359.
- 14X. Chen, N. Sawut, K. Chen, H. Li, J. Zhang, Z. Wang, M. Yang, G. Tang, X. Ai, H. Yang, Y. Fang, Y. Cao, Energy Environ. Sci. 2023, 16, 4041–4053.
- 15R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 2021, 6, 1020–1035.
- 16Y. Wang, Y. Zhao, S. Zhang, L. Shang, Y. Ni, Y. Lu, Y. Li, Z. Yan, Z. Miao, J. Chen, Angew. Chem. Int. Ed. 2024, 63, e202412108.
- 17Y.-H. Feng, M. Liu, W. Qi, H. Liu, Q. Liu, C. Yang, Y. Tang, X. Zhu, S. Sun, Y.-M. Li, T.-L. Chen, B. Xiao, X. Ji, Y. You, P.-F. Wang, Angew. Chem. Int. Ed. 2024, e202415644.
- 18M. Ma, B. Chen, X. Yang, Y. Liu, S. Dai, X. Qi, Y. Hu, H. Pan, ACS Energy Lett. 2023, 8, 477–485.
- 19H.-J. Liang, H.-H. Liu, J.-Z. Guo, X.-X. Zhao, Z.-Y. Gu, J.-L. Yang, X.-Y. Zhang, Z.-M. Liu, W.-L. Li, X.-L. Wu, Energy Storage Mater. 2024, 66, 103230.
- 20M. Liu, W. Liu, Z. Zeng, F. Ma, Y. Wu, K. Li, W. Zhong, X. Chen, S. Cheng, J. Xie, Adv. Energy Mater. 2025, 2500864.
- 21Y. Wu, Z. Zeng, S. Lei, M. Liu, W. Zhong, M. Qin, S. Cheng, J. Xie, Angew. Chem. Int. Ed. 2023, 62, e202217774.
- 22K. Du, C. Wang, P. Balaya, S. R. Gajjela, M. Law, Chem. Comm. 2022, 58, 533–536.
- 23W. W. A. van Ekeren, A. M. Pereira, M. Albuquerque, L. T. Costa, R. Younesi, ACS Appl.Mater.Interfaces 2024, 16, 56355–56365.
- 24M. Liu, Z. Zeng, C. Gu, F. Ma, Y. Wu, Q. Wu, X. Yang, X. Chen, S. Cheng, J. Xie, ACS Energy Lett. 2024, 9, 136–144.
- 25F. Gebert, R. Lundström, W. van Ekeren, A. J. Naylor, Batteries Supercaps 2024, 7, e202400342.
- 26J. Ge, X. Hou, B. Du, X. Ge, L. Zeng, nviron. Sci. Technol. Lett. 2024, 11, 1116–1121.
- 27S. Tan, Y. Tian, Y. Zhao, X. Feng, J. Zhang, C. Zhang, M. Fan, J. Guo, Y. Yin, F. Wang, S. Xin, Y.-G. Guo, J. Am. Chem. Soc. 2022, 144, 18240–18245.
- 28H. Chen, K. Chen, J. Yang, B. Liu, L. Luo, H. Li, L. Chen, A. Zhao, X. Liang, J. Feng, Y. Fang, Y. Cao, J. Am. Chem. Soc. 2024, 146, 15751–15760.
- 29M. Liu, Z. Zeng, Y. Wu, W. Zhong, S. Lei, S. Cheng, J. Wen, J. Xie, Energy Storage Mater. 2024, 65, 103133.
- 30J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22–29.
- 31Y. Jin, Y. Xu, P. M. L. Le, T. D. Vo, Q. Zhou, X. Qi, M. H. Engelhard, B. E. Matthews, H. Jia, Z. Nie, C. Niu, C. Wang, Y. Hu, H. Pan, J.-G. Zhang, ACS Energy Lett. 2020, 5, 3212–3220.
- 32Z. Yang, J. He, W.-H. Lai, J. Peng, X.-H. Liu, X.-X. He, X.-F. Guo, L. Li, Y. Qiao, J.-M. Ma, M. Wu, S.-L. Chou, Angew. Chem. Int. Ed. 2021, 60, 27086–27094.
- 33M. Ma, B. Chen, Y. Tu, H. Pan, ACS Energy Lett. 2024, 9, 4655–4665.
- 34X. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai, H. Yang, Y. Cao, iScience 2018, 10, 114–122.
- 35Y. Jin, P. M. L. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, B. E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, J.-G. Zhang, Nat. Energy 2022, 7, 718–725.
- 36L. Chen, M. Chen, Q. Meng, J. Zhang, G. Feng, X. Ai, Y. Cao, Z. Chen, Angew. Chem. Int. Ed. 2024, 63, e202407717.
- 37M. Liu, Z. Zeng, H. Yan, Q. Wu, Y. Wu, W. Liu, S. Lei, C. Liao, X. Ai, S. Cheng, J. Xie, Chem. Eng. J. 2024, 496, 154146.
- 38M. He, L. Zhu, G. Ye, Y. An, X. Hong, Y. Ma, Z. Xiao, Y. Jia, Q. Pang, Angew. Chem. Int. Ed. 2024, 63, e202401051.
- 39H.-J. Liang, H.-H. Liu, X.-X. Zhao, Z.-Y. Gu, J.-L. Yang, X.-Y. Zhang, Z.-M. Liu, Y.-Z. Tang, J.-P. Zhang, X.-L. Wu, J. Am. Chem. Soc. 2024, 146, 7295–7304.
- 40Y. Liu, L. Zhu, E. Wang, Y. An, Y. Liu, K. Shen, M. He, Y. Jia, G. Ye, Z. Xiao, Y. Li, Q. Pang, Adv. Mater. 2024, 36, 2310051.
- 41Y. Wu, Q. Hu, H. Liang, A. Wang, H. Xu, L. Wang, X. He, Adv. Energy Mater. 2023, 13, 2300259.
- 42J. Chen, H. Zhang, M. Fang, C. Ke, S. Liu, J. Wang, ACS Energy Lett. 2023, 8, 1723–1734.
- 43K. Chen, X. Shen, L. Luo, H. Chen, R. Cao, X. Feng, W. Chen, Y. Fang, Y. Cao, Angew. Chem. Int. Ed. 2023, 62, e202312373.
- 44Z. Zeng, V. Murugesan, K. S. Han, X. Jiang, Y. Cao, L. Xiao, X. Ai, H. Yang, J.-G. Zhang, M. L. Sushko, J. Liu, Nat. Energy 2018, 3, 674–681.
- 45M. Liu, F. Ma, Z. Ge, Z. Zeng, Q. Wu, H. Yan, Y. Wu, S. Lei, Y. Zhu, S. Cheng, J. Xie, Sci. China Chem. 2024, 67, 724–731.
- 46G. A. Giffin, Nat. Commun. 2022, 13, 5250.
- 47M. Ma, B. Chen, H. Pan, Chem. Sci. 2023, 14, 5983–5991.
- 48Z. Yang, Y. Dai, Z.-K. Xie, S. Bo Li, Y.-J. Lei, J. Chen, X. Zhou, Z.-Q. Hao, X. Tan, L. Li, W.-H. Lai, L. Li, W.-H. Chen, S.-L. Chou, Natl. Sci. Rev. 2024, nwae466.
- 49Y. Wang, X. Feng, D. Guo, H. Hsu, J. Hou, F. Zhang, C. Xu, X. Chen, L. Wang, Q. Zhang, M. Ouyang, Joule 2024, 8, 2639–2651.
- 50J. Wang, X. Feng, Y. Yu, H. Huang, M. Zheng, Y. Xu, J. Wu, Y. Yang, J. Lu, Nat. Energy 2024, 9, 939–946.