Mechanically and Chemically Co-Robust Ni-Rich Cathodes with Ultrahigh Capacity and Prolonged Cycle Life
Bo Wang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorKuo Li
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorGe Xu
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZihan Zhang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorXinxin Wang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
Search for more papers by this authorJun Sun
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorYijun Song
School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorXuedong Zhang
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorYali Liang
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorDejie Kong
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorYuan Qiu
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorQipeng Teng
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorXin Cui
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorJingzhao Chen
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorJun Zhao
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorJing Wang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorCorresponding Author
Hui Yang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jianyu Huang
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yongfu Tang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBo Wang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorKuo Li
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorGe Xu
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZihan Zhang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorXinxin Wang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
Search for more papers by this authorJun Sun
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorYijun Song
School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorXuedong Zhang
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorYali Liang
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorDejie Kong
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorYuan Qiu
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorQipeng Teng
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorXin Cui
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorJingzhao Chen
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorJun Zhao
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorJing Wang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Search for more papers by this authorCorresponding Author
Hui Yang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jianyu Huang
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yongfu Tang
Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004 P.R. China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Ni-rich layered oxide (NRLO) materials are considered highly promising cathode for lithium-ion batteries. However, their practical application is limited by capacity loss and interface instability caused by chemical and mechanical failure during cycling. Doping has been identified as a direct and effective method to address these challenges. However, mechanistic understanding of doping enhanced electrochemical performance is still unclear. In this study, the introduction of high-valent Nb ions was employed to achieve mechanical–chemical coupling regulation, thereby concurrently improving the capacity and cycle life of NRLO. First, Nb5+ doping was conducted to refine secondary grains, achieving a “grain refinement” effect similar to that in ceramics and alloys, while further stabilizing the grain boundaries. The intergrain fusion structure of NCM811-0.5Nb effectively dissipates lattice strain under highly delithiated state, suppresses oxygen loss, and prevents cracks that lead to fracture during cycling. Moreover, Nb doping stabilizes the monoclinic phase during phase transitions and promotes the formation of highly stable spinel twin boundaries after cycling. This effectively reduces the Li diffusion barrier, leading to improved reversible specific capacity and rate capability. Lastly, the strong Nb─O bonding restrains oxygen release and transition metal/Li antisite mixing, thus mitigate rock-salt phase formation. This study demonstrates a comprehensive understanding of the concurrent capacity and stability enhancement mechanisms attributed to Nb-doping and highlights the significant potential of the synergistic regulation of mechanical and chemical coupling in improving the capacity and lifespan of NRLOs by Nb-doping.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202502725-sup-0001-SuppMat.docx43.3 MB | Supporting Information |
anie202502725-sup-0002-SuppMat.avi3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Zhang, Y. Chu, J. Wu, P. Dong, Q. Deng, C. Chen, K. Huang, C. Yang, J. Lu, Adv. Energy Mater. 2024, 14, 2303764.
- 2T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, M. Li, M. Li, Z. Hu, L. Ma, D. Luo, J. Zheng, T. Wu, Y. Ren, J. Wen, F. Pan, K. Amine, Nat. Energy 2021, 6, 277–286.
- 3J. B. Adamo, A. Manthiram, Chem. Mater. 2024, 36, 6226–6236.
- 4G. Qian, Y. Zhang, L. Li, R. Zhang, J. Xu, Z. Cheng, S. Xie, H. Wang, Q. Rao, Y. He, Y. Shen, L. Chen, M. Tang, Z.-F. Ma, Energy Storage Mater. 2020, 27, 140–149.
- 5C. Wang, L. Tan, H. Yi, Z. Zhao, X. Yi, Y. Zhou, J. Zheng, J. Wang, L. Li, Nano Res. 2022, 15, 9038–9046.
- 6C. Xu, P. J. Reeves, Q. Jacquet, C. P. Grey, Adv. Energy Mater. 2021, 11, 2003404.
- 7Z. Wu, C. Zhang, F. Yuan, M. Lyu, P. Yang, L. Zhang, M. Zhou, L. Wang, S. Zhang, L. Wang, Nano Energy 2024, 126, 109620.
- 8S. Li, Z. Yao, J. Zheng, M. Fu, J. Cen, S. Hwang, H. Jin, A. Orlov, L. Gu, S. Wang, Z. Chen, D. Su, Angew. Chem. Int. Ed. 2020, 59, 22092–22099.
- 9P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen, K. Amine, J.-G. Zhang, L.-M. Liu, C. Wang, Nat. Nanotechnol. 2019, 14, 602–608.
- 10T. Zhou, H. Wang, Y. Wang, P. Jiao, Z. Hao, K. Zhang, J. Xu, J.-B. Liu, Y.-S. He, Y.-X. Zhang, L. Chen, L. Li, W. Zhang, Z.-F. Ma, J. Chen, Chem 2022, 8, 2817–2830.
- 11X. Qu, H. Huang, T. Wan, L. Hu, Z. Yu, Y. Liu, A. Dou, Y. Zhou, M. Su, X. Peng, H.-H. Wu, T. Wu, D. Chu, Nano Energy 2022, 91, 106665.
- 12Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han, B. Lu, J. Zhou, G. Chen, Adv. Mater. 2024, 36, 2307091.
- 13N.-Y. Park, S.-B. Kim, M.-C. Kim, S.-M. Han, D.-H. Kim, M.-S. Kim, Y.-K. Sun, Adv. Energy Mater. 2023, 13, 2301530.
- 14Z. Feng, S. Zhang, R. Rajagopalan, X. Huang, Y. Ren, D. Sun, H. Wang, Y. Tang, ACS Appl. Mater. Interfaces 2021, 13, 43039–43050.
- 15R. Wang, J. Chen, Y. Zhang, Z. Li, S. Cao, X. Liu, H. Hu, L. Wu, Y. Shen, X. Wang, Chem. Eng. J. 2024, 485, 149827.
- 16L. Lin, L. Zhang, Z. Fu, J. Lou, Z. Gao, J. Wu, C. Li, C. Han, D. Zhou, Z. Wang, B. Li, Adv. Mater. 2024, 36, 2406175.
- 17Y. Tang, Z. Chen, F. Lin, H. Zhu, J. Wen, Y. Wang, M. Bai, J. Duan, J. Alloys Compd. 2023, 959, 170552.
- 18F. Xin, H. Zhou, Y. Zong, M. Zuba, Y. Chen, N. A. Chernova, J. Bai, B. Pei, A. Goel, J. Rana, F. Wang, K. An, L. F. J. Piper, G. Zhou, M. S. Whittingham, ACS Energy Lett. 2021, 6, 1377–1382.
- 19P. Hou, M. Gong, Y. Tian, F. Li, J. Colloid Interface Sci. 2024, 653, 129–136.
- 20F. Xin, I. S. Buyuker, H. Zhou, F. Guo, A. Goel, J. Bai, F. Wang, M. S. Whittingham, ACS Energy Lett. 2024, 9, 5172–5178.
- 21F. Xin, A. Goel, X. Chen, H. Zhou, J. Bai, S. Liu, F. Wang, G. Zhou, M. S. Whittingham, Chem. Mater. 2022, 34, 7858–7866.
- 22X. Ren, Y. Li, X. Xi, S. Liu, Y. Xiong, D. Zhang, S. Wang, J. Zheng, J. Power Sources 2021, 499, 229756.
- 23K. Zou, M. Jiang, T. Ning, L. Tan, J. Zheng, J. Wang, X. Ji, L. Li, J. Energy Chem. 2024, 97, 321–331.
- 24S. Zhang, J. Wu, N. Jiang, H. Sun, H. Yang, L. Shen, M. Zhou, W. Liu, H. Zhou, H. Zhao, Adv. Energy Mater. 2024, 14, 2401123.
- 25X. Feng, Y. Gao, L. Ben, Z. Yang, Z. Wang, L. Chen, J. Power Sources 2016, 317, 74–80.
- 26Z. Bi, Z. Yi, A. Zhang, C. Dong, G. Wang, L. Xie, S. Liao, H. Liu, C. Chen, Z.-S. Wu, Energy Environ. Sci. 2024, 17, 5706-5718, https://doi.org/10.1039/D4EE01674B.
- 27M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2021, 11, 2103005.
- 28P. Zhao, M. Sedlacik, P. Saha, H. Yu, H. Wang, H. Jiang, ACS Sustainable Chem. Eng. 2024, 12, 4993–5000.
- 29B. K. Kim, G. H. Ha, D. W. Lee, J. Mater. Process. Technol. 1997, 63, 317–321.
- 30T. Karthik, S. Asthana, Mater. Lett. 2017, 190, 273–275.
- 31G. Zhou, Q. Huang, Y. Chen, X. Yu, H. Zhou, Metals 2022, 12, 451.
- 32H. Zhou, F. Xin, B. Pei, M. S. Whittingham, ACS Energy Lett. 2019, 4, 1902–1906.
- 33Y. Song, Y. Cui, L. Geng, B. Li, L. Ge, L. Zhou, Z. Qiu, J. Nan, W. Wu, H. Xu, X. Li, Z. Yan, Q. Xue, Y. Tang, W. Xing, Adv. Energy Mater. 2024, 14, 2303207.
- 34S. S. Zhang, J. Energy Chem. 2020, 41, 135–141.
- 35A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2016, 2, 16010.
- 36Y.-H. Chen, J. Zhang, Y. Li, Y.-F. Zhang, S.-P. Huang, W. Lin, W.-K. Chen, Phys. Chem. Chem. Phys. 2021, 23, 11528–11537.
- 37M. E. Arroyo y de Dompablo, G. Ceder, Chem. Mater. 2003, 15, 63–67.
- 38S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J. H. Warner, A. Manthiram, Adv. Energy Mater. 2021, 11, 2100858.
- 39Y. Yang, J. Cai, Y. Zuo, K. Zhang, C. Gao, L. Zhou, Z. Chen, W. Chu, D. Xia, Energy Storage Mater. 2024, 71, 103587.
- 40P. Lu, S. Gong, C. Wang, Z. Yu, Y. Huang, T. Ma, J. Lian, Z. Jiang, L. Chen, H. Li, F. Wu, ACS Nano 2024, 18, 7334–7345.
- 41Y.-H. Luo, Q.-L. Pan, H.-X. Wei, Y.-D. Huang, L.-B. Tang, Z.-Y. Wang, C. Yan, J. Mao, K.-H. Dai, Q. Wu, X.-H. Zhang, J.-C. Zheng, Mater. Today 2023, 69, 333–354.
- 42J. Meng, G. Qu, Y. Huang, eTransportation 2023, 16, 100233.
- 43M. Shang, H. Ren, W. Zhao, Z. Li, J. Fang, H. Chen, W. Fan, F. Pan, Q. Zhao, ACS Nano 2024, 18, 16982–16993.
- 44G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 45G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758–1775.
- 46J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 47N.-Y. Park, S.-M. Han, J.-H. Ryu, M.-C. Kim, J.-I. Yoon, J.-H. Kim, G.-T. Park, J. E. Frerichs, C. Erk, Y.-K. Sun, ACS Energy Lett. 2024, 9, 3595–3604.
- 48Q. Hu, Y. Wu, D. Ren, J. Liao, Y. Song, H. Liang, A. Wang, Y. He, L. Wang, Z. Chen, X. He, Energy Storage Mater. 2022, 50, 373–379.
- 49L. Wang, B. Zhu, D. Xiao, X. Zhang, B. Wang, H. Li, T. Wu, S. Liu, H. Yu, Adv. Funct. Mater. 2023, 33, 2212849.
- 50U.-H. Kim, G.-T. Park, B.-K. Son, G. W. Nam, J. Liu, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, Y.-K. Sun, Nat. Energy 2021, 6, 115–115.
- 51X. Xu, H. Huo, J. Jian, L. Wang, H. Zhu, S. Xu, X. He, G. Yin, C. Du, X. Sun, Adv. Energy Mater. 2019, 9, 1803963.
- 52S. Yin, W. Deng, J. Chen, X. Gao, G. Zou, H. Hou, X. Ji, Nano Energy 2021, 83, 105854.
- 53P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J.-G. Zhang, Nat. Energy 2018, 3, 600–605.
- 54G.-L. Xu, Q. Liu, K. K. S. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, G. Chen, Nat. Energy 2019, 4, 484–494.
- 55S.-B. Lee, N.-Y. Park, G.-T. Park, U.-H. Kim, S.-J. Sohn, M.-S. Kang, R. M. Ribas, R. S. Monteiro, Y.-K. Sun, ACS Energy Lett. 2024, 9, 740–747.
- 56E. Flores, N. Vonrüti, P. Novák, U. Aschauer, E. J. Berg, Chem. Mater. 2018, 30, 4694–4703.
- 57Y.-G. Zou, H. Mao, X.-H. Meng, Y.-H. Du, H. Sheng, X. Yu, J.-L. Shi, Y.-G. Guo, Angew. Chem. Int. Ed. 2021, 60, 26535–26539.
- 58X. Tan, Z. Chen, T. Liu, Y. Zhang, M. Zhang, S. Li, W. Chu, K. Liu, P. Yang, F. Pan, Adv. Mater. 2023, 35, 2301096.
- 59S. Jamil, G. Wang, L. Yang, X. Xie, S. Cao, H. Liu, B. Chang, X. Wang, J. Mater. Chem. A 2020, 8, 21306–21316.
- 60F. Wu, N. Liu, L. Chen, Y. Su, G. Tan, L. Bao, Q. Zhang, Y. Lu, J. Wang, S. Chen, J. Tan, Nano Energy 2019, 59, 50–57.
- 61L. Cheng, B. Zhang, S.-L. Su, L. Ming, Y. Zhao, X.-X. Tan, RSC Adv. 2021, 11, 124–128.