Synergistic Nitrogen Binding Sites in a Metal-Organic Framework for Efficient N2/O2 Separation
Dr. Feifei Zhang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorDr. Hua Shang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorBolun Zhai
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorZhiwei Zhao
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorProf. Libo Li
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Prof. Jinping Li
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Prof. Jiangfeng Yang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorDr. Feifei Zhang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorDr. Hua Shang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorBolun Zhai
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorZhiwei Zhao
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorProf. Libo Li
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Prof. Jinping Li
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorCorresponding Author
Prof. Jiangfeng Yang
College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi Province, China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 Shanxi Province, China
Search for more papers by this authorGraphical Abstract
Abstract
Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2/O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0 kJ mol−1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38 cm3 cm−3), and highest N2/O2 selectivity (13.11) at 298 K and 1.0 bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21 N2/O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75 mmol g−1. In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202316149-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Jaffe, M. E. Ziebel, D. M. Halat, N. Biggins, R. A. Murphy, K. Chakarawet, J. A. Reimer, J. R. Long, J. Am. Chem. Soc. 2020, 142, 14627;
- 1bH. Demir, S. J. Stoneburner, W. Jeong, D. Ray, X. Zhang, O. K. Farha, C. J. Cramer, J. I. Siepmann, L. Gagliardi, J. Phys. Chem. C 2019, 123, 12935.
- 2
- 2aE. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R. Krishna, V. K. Peterson, F. Grandjean, G. J. Long, B. Smit, S. Bordiga, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14814;
- 2bL. J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2010, 132, 7856;
- 2cE. Kouvelos, K. Kesore, T. Steriotis, H. Grigoropoulou, D. Bouloubasi, N. Theophilou, S. Tzintzos, N. Kanelopoulos, Microporous Mesoporous Mater. 2007, 99, 106–111.
- 3R.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chem 2020, 6, 337–363.
- 4
- 4aD. Saha, H. A. Grappe, A. Chakraborty, G. Orkoulas, Chem. Rev. 2016, 116, 11436–11499;
- 4bD. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437;
- 4cD. M. Ruthven, Chem. Ing. Tech. 2011, 83, 44–52.
- 5
- 5aS. Sircar, Ind. Eng. Chem. Res. 2002, 41, 1389–1392;
- 5bX. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189;
- 5cZ.-G. Gu, J. Zhang, Coord. Chem. Rev. 2019, 378, 513–532.
- 6J. Pei, H.-M. Wen, X.-W. Gu, Q.-L. Qian, Y. Yang, Y. Cui, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 25068–25074.
- 7J. J. Potoff, J. I. Siepmann, AIChE J. 2001, 47, 1676.
- 8F. Zhang, H. Shang, L. Wang, Y. Wang, J. Yang, Y. Xia, H. Li, L. Li, J. Li, Adv. Mater. 2021, 33, 2100866.
- 9
- 9aH. Li, M. Eddaoudi, M. O'Keefe, O. M. Yaghi, Nature 1999, 402, 276–279;
- 9bS. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375;
- 9cG. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- 10
- 10aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 10bY. Yan, S. Yang, A. J. Blake, M. Schröder, Acc. Chem. Res. 2014, 47, 296–307;
- 10cP. Li, N. A. Vermeulen, C. D. Malliakas, D. A. Gómez-Gualdrón, A. J. Howarth, B. L. Mehdi, A. Dohnalkova, N. D. Browning, M. O'Keeffe, O. K. Farha, Science 2017, 356, 624–627;
- 10dB. Li, M. Chrzanowski, Y. Zhang, S. Ma, Coord. Chem. Rev. 2016, 307, 106–129;
- 10eK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781.
- 11
- 11aJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 11bL. Li, L. Guo, Z. Zhang, Q. Yang, Y. Yang, Z. Bao, Q. Ren, J. Li, J. Am. Chem. Soc. 2019, 141, 9358–9364;
- 11cP.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193–1196;
- 11dX. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640;
- 11eL. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8, 1233.
- 12
- 12aS. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5700–5734;
- 12bW.-G. Cui, T.-L. Hu, X.-H. Bu, Adv. Mater. 2020, 32, 1806445;
- 12cB. Li, H.-M. Wen, Y. Yu, Y. Cui, W. Zhou, B. Chen, G. Qian, Mater. Today Nano 2018, 2, 21–49;
- 12dX. Song, M. Zhang, C. Chen, J. Duan, W. Zhang, Y. Pan, J. Bai, J. Am. Chem. Soc. 2019, 141, 14539–14543.
- 13U. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali, O. Weingart, C. Janiak, Chem. Soc. Rev. 2020, 49, 2751–2798.
- 14M. H. Mohamed, Y. Yang, L. Li, S. Zhang, J. P. Ruffley, A. G. Jarvi, S. Saxena, G. Veser, J. K. Johnson, N. L. Rosi, J. Am. Chem. Soc. 2019, 141, 13003–13007.
- 15H. Wang, Y. Liu, J. Li, Adv. Mater. 2020, 32, 2002603.
- 16J. W. Yoon, H. Chang, S.-J. Lee, Y. K. Hwang, D.-Y. Hong, S.-K. Lee, J. S. Lee, S. Jang, T.-U. Yoon, K. Kwac, Y. Jung, R. S. Pillai, F. Faucher, A. Vimont, M. Daturi, G. Ferey, C. Serre, G. Maurin, Y.-S. Bae, J.-S. Chang, Nat. Mater. 2017, 16, 526–531.
- 17R. S. Pillai, J. W. Yoon, S.-J. Lee, Y. K. Hwang, Y.-S. Bae, J.-S. Chang, G. Maurin, J. Phys. Chem. C 2017, 121, 22130–22138.
- 18F. Zhang, H. Shang, L. Wang, L. Ma, K. Li, Y. Zhang, J. Yang, L. Li, J. Li, ACS Appl. Mater. Interfaces 2022, 14, 2146–2154.
- 19D. E. Jaramillo, D. A. Reed, H. Z. H. Jiang, J. Oktawiec, M. W. Mara, A. C. Forse, D. J. Lussier, R. A. Murphy, M. Cunningham, V. Colombo, D. K. Shuh, J. A. Reimer, J. R. Long, Nat. Mater. 2020, 19, 517–521.
- 20
- 20aP. Zhang, Y. Zhong, Y. Zhang, Z. Zhu, Y. Liu, Y. Su, J. Chen, S. Chen, Z. Zeng, H. Xing, S. Deng, J. Wang, Sci. Adv. 2022, 8, eabn9231;
- 20bG. L. Smith, J. E. Eyley, X. Han, X. Zhang, J. Li, N. M. Jacques, H. G. W. Godfrey, S. P. Argent, L. J. M. McPherson, S. J. Teat, Y. Cheng, M. D. Frogley, G. Cinque, S. J. Day, C. C. Tang, T. L. Easun, S. Rudic, A. J. Ramirez-Cuesta, S. Yang, M. Schroder, Nat. Mater. 2019, 18, 1358–1365.
- 21
- 21aL. Yang, X. Cui, Q. Yang, S. Qian, H. Wu, Z. Bao, Z. Zhang, Q. Ren, W. Zhou, B. Chen, H. Xing, Adv. Mater. 2018, 30, 1705374;
- 21bM. Wriedt, J. P. Sculley, A. A. Yakovenko, Y. Ma, G. J. Halder, P. B. Balbuena, H.-C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 9804–9808;
- 21cO. T. Qazvini, R. Babarao, Z.-L. Shi, Y.-B. Zhang, S. G. Telfer, J. Am. Chem. Soc. 2019, 141, 5014–5020;
- 21dZ. Niu, X. Cui, T. Pham, P. C. Lan, H. Xing, K. A. Forrest, L. Wojtas, B. Space, S. Ma, Angew. Chem. Int. Ed. 2019, 58, 10138–10141;
- 21eH.-G. Hao, Y.-F. Zhao, D.-M. Chen, J.-M. Yu, K. Tan, S. Ma, Y. Chabal, Z.-M. Zhang, J.-M. Dou, Z.-H. Xiao, G. Day, H.-C. Zhou, T.-B. Lu, Angew. Chem. Int. Ed. 2018, 57, 16067–16071;
- 21fZ. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288.
- 22S. Surblé, F. Millange, C. Serre, T. Duren, M. Latroche, S. Bourrelly, P. L. Llewellyn, G. Ferey, J. Am. Chem. Soc. 2006, 128, 14889–14896.
- 23M. Zhao, Y. Ban, K. Yang, Y. Zhou, N. Cao, Y. Wang, W. Yang, Angew. Chem. Int. Ed. 2021, 60, 20977–20983.
- 24
- 24aH. Zhang, B. Tang, JACS Au 2021, 1, 1805–1814;
- 24bL. Viglianti, N. Xie, H. H. Y. Sung, A. A. Voityuk, N. L. C. Leung, Y. Tu, C. Baldoli, D. Williams, R. T. K. Kwok, W. Y. Lam, E. Licandro, L. Blancafort, B. Tang, Angew. Chem. Int. Ed. 2020, 59, 8552–8559.