Synthesis of Closed-Heterohelicenes Interconvertible between Their Monomeric and Dimeric Forms
Yusuke Matsuo
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorDr. Chihiro Maeda
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530 Japan
Search for more papers by this authorDr. Yusuke Tsutsui
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
Search for more papers by this authorCorresponding Author
Dr. Takayuki Tanaka
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorProf. Dr. Shu Seki
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorYusuke Matsuo
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorDr. Chihiro Maeda
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530 Japan
Search for more papers by this authorDr. Yusuke Tsutsui
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
Search for more papers by this authorCorresponding Author
Dr. Takayuki Tanaka
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorProf. Dr. Shu Seki
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 Japan
Search for more papers by this authorGraphical Abstract
The oxidation of closed-[7]helicenes with [bis(trifluoroacetoxy)iodo]benzene gave the corresponding dimers connected at the β-positions of the pyrrole units through a remarkably elongated C−C bond of about 1.60 Å. Homolytic bond dissociation took place upon UV irradiation to reform its monomeric form. The interconversion between monomeric and dimeric forms is associated with a turn-on of circularly polarized luminescence.
Abstract
Oxidative fusion reaction of cyclic heteroaromatic pentads consisting of pyrrole and thiophene gave closed-heterohelicene monomers and dimers depending on the oxidation conditions. Specifically, oxidation with [bis(trifluoroacetoxy)iodo]benzene (PIFA) gave closed-[7]helicene dimers connected at the β-position of one of the pyrrole units with remarkably elongated C−C bonds of about 1.60 Å. Although this bond was intact against thermal and physical activations, homolytic bond dissociation took place in DMSO upon irradiation with UV light to give the corresponding monomers. Thus, interconversion between the closed-helicene monomer and dimer was achieved. The optically pure dimer was photo-dissociated into the monomers associated with a turn-on of circularly polarized luminescence (CPL).
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202314968-sup-0001-(SNNN-S)2.cif2.3 MB | Supporting Information |
anie202314968-sup-0001-(SNSN-S)2).cif1.8 MB | Supporting Information |
anie202314968-sup-0001-2S3N.cif1.7 MB | Supporting Information |
anie202314968-sup-0001-3S2N.cif858.7 KB | Supporting Information |
anie202314968-sup-0001-misc_information.pdf37.3 MB | Supporting Information |
anie202314968-sup-0001-SNNN-S.cif1.1 MB | Supporting Information |
anie202314968-sup-0001-SNSN-S.cif1,003.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. H. Martin, Angew. Chem. Int. Ed. Engl. 1974, 13, 649;
- 1bS. Grimme, J. Harren, A. Sobanski, F. Vögtle, Eur. J. Org. Chem. 1998, 1491;
10.1002/(SICI)1099-0690(199808)1998:8<1491::AID-EJOC1491>3.0.CO;2-6 CAS Web of Science® Google Scholar
- 1cA. Urbano, Angew. Chem. Int. Ed. 2003, 42, 3986;
- 1dS. K. Collins, M. P. Vachon, Org. Biomol. Chem. 2006, 4, 2518;
- 1eY. Shen, C. F. Chen, Chem. Rev. 2012, 112, 1463;
- 1fM. Gingras, Chem. Soc. Rev. 2013, 42, 968;
- 1gM. Gingras, G. Félix, R. Peresutti, Chem. Soc. Rev. 2013, 42, 1007;
- 1hW.-L. Zhao, M. Li, H.-Y. Lu, C.-F. Chen, Chem. Commun. 2019, 55, 13793;
- 1iK. Dhbaibi, L. Favereau, J. Crassous, Chem. Rev. 2019, 119, 8846;
- 1jM. Jakubec, J. Storch, J. Org. Chem. 2020, 85, 13415;
- 1kA. Tsurusaki, K. Kamikawa, Chem. Lett. 2021, 50, 1913;
- 1lT. Mori, Chem. Rev. 2021, 121, 2373;
- 1mP. Ravat, Chem. Eur. J. 2021, 27, 3957.
- 2
- 2aI. Sato, R. Yamashima, K. Kadowaki, J. Yamamoto, T. Shibata, K. Soai, Angew. Chem. Int. Ed. 2001, 40, 1096;
10.1002/1521-3773(20010316)40:6<1096::AID-ANIE10960>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 2bR. Hassey, E. J. Swain, N. I. Hammer, D. Venkataraman, M. D. Barnes, Science 2006, 314, 1437;
- 2cG. Muller, Dalton Trans. 2009, 9692;
- 2dR. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, H. T. Grahn, Appl. Phys. Lett. 2011, 98, 162508;
- 2eY. Yang, R. C. D. Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634;
- 2fF. Song, G. Wei, X. Jiang, F. Li, C. Zhu, Y. Cheng, Chem. Commun. 2013, 49, 5772;
- 2gY. Yang, R. C. D. Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, Adv. Mater. 2013, 25, 2624;
- 2hV. Kiran, S. P. Mathew, S. R. Cohen, I. H. Delgado, J. Lacour, R. Naaman Adv. Mater. 2016, 28, 1957.
- 3
- 3aT. B. Norsten, A. Peters, R. McDonald, M. Wang, N. R. Branda, J. Am. Chem. Soc. 2001, 123, 7447;
- 3bZ. Y. Wang, E. K. Todd, X. S. Meng, J. P. Gao, J. Am. Chem. Soc. 2005, 127, 11552;
- 3cT. J. Wigglesworth, D. Sud, T. B. Norsten, V. S. Lekhi, N. R. Branda, J. Am. Chem. Soc. 2005, 127, 7272;
- 3dJ.N. Moorthy, P. Venkatakrishnan, S. Sengupta, M. Baidya, Org. Lett. 2006, 8, 4891.
- 4
- 4aJ. K. Zak, M. Miyasaka, S. Rajca, M. Lapkowski, A. Rajca, J. Am. Chem. Soc. 2010, 132, 3246;
- 4bE. Anger, M. Srebro, N. Vanthuyne, L. Toupet, S. Rigaut, C. Roussel, J. Autschbach, J. Crassous, R. Réau, J. Am. Chem. Soc. 2012, 134, 15628;
- 4cT. Biet, A. Fihey, T. Cauchy, N. Vanthuyne, C. Roussel, J. Crassous, N. Avarvari, Chem. Eur. J. 2013, 19, 13160;
- 4dD. Schweinfurth, M. Zalibera, M. Kathan, C. Shen, M. Mazzolini, N. Trapp, J. Crassous, G. Gescheidt, F. Diederich, J. Am. Chem. Soc. 2014, 136, 13045;
- 4eM. Srebro, E. Anger, B. Moore II, N. Vanthuyne, C. Roussel, R. Réau, J. Autschbach, J. Crassous, Chem. Eur. J. 2015, 21, 17100.
- 5
- 5aE. Anger, M. Srebro, N. Vanthuyne, C. Roussel, L. Toupet, J. Autschbach, R. Réau, J. Crassous, Chem. Commun. 2014, 50, 2854;
- 5bN. Saleh, B. Moore, M. Srebro, N. Vanthuyne, L. Toupet, J. A. G. Williams, C. Roussel, K. K. Deol, G. Muller, J. Autschbach, J. Crassous, Chem. Eur. J. 2015, 21, 1673.
- 6
- 6aE. Yen-Pon, F. Buttard, L. Frédéric, P. Thuéry, F. Taran, G. Pieters, P. A. Champagne, D. Audisio, JACS Au 2021, 1, 807;
- 6bP. Karak, J. Choudhury, Chem. Sci. 2022, 13, 11163.
- 7J. R. Brandt, L. Pospíšil, L. Bednárová, R. C. da Costa, A. J. P. White, T. Mori, F. Teplý, M. J. Fuchter, Chem. Commun. 2017, 53, 9059.
- 8
- 8aN. Takenaka, R. S. Sarangthem, B. Captain, Angew. Chem. Int. Ed. 2008, 47, 9708;
- 8bK. Goto, R. Yamaguchi, S. Hiroto, H. Ueno, T. Kawai, H. Shinokubo, Angew. Chem. Int. Ed. 2012, 51, 10333;
- 8cW. Hua, Z. Liu, L. Duan, G. Dong, Y. Qiu, B. Zhang, D. Cui, X. Tao, N. Cheng, Y. Liu, RSC Adv. 2015, 5, 75;
- 8dT. Otani, A. Tsuyuki, T. Iwachi, S. Someya, K. Tateno, H. Kawai, T. Saito, K. S. Kanyiva, T. Shibata, Angew. Chem. Int. Ed. 2017, 56, 3906;
- 8eS. K. Pedersen, K. Eriksen, M. Pittelkow, Angew. Chem. Int. Ed. 2019, 58, 18419;
- 8fJ. Feng, L. Wang, X. Xue, Z. Chao, B. Hong, Z. Gu, Org. Lett. 2021, 23, 8056;
- 8gM. Salim, H. Ubukata, T. Kimura, M. Karikomi, Tetrahedron Lett. 2011, 52, 6591;
- 8hT. Yanagi, T. Tanaka, H. Yorimitsu, Chem. Sci. 2021, 12, 2784;
- 8iY. Hashmi, T. Thongpanchang, Eur. J. Org. Chem. 2023, 2023, e202201373.
- 9
- 9aA. Rajca, H. Wang, M. Pink, S. Rajca, Angew. Chem. Int. Ed. 2000, 39, 4481;
10.1002/1521-3773(20001215)39:24<4481::AID-ANIE4481>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 9bA. Rajca, M. Miyasaka, M. Pink, H. Wang, S. Rajca, J. Am. Chem. Soc. 2004, 126, 15211;
- 9cC. Li, J. Shi, L. Xu, Y. Wang, Y. Cheng, H. Wang, J. Org. Chem. 2009, 74, 408;
- 9dX. Liu, H. Sun, W. Xu, S. Wan, J. Shi, C. Li, H. Wang, Org. Chem. Front. 2018, 5, 1257;
- 9eJ. Wang, G. Wang, C. Li, Y. Dong, Z. Ma, H. Wang, J. Org. Chem. 2021, 86, 4413.
- 10
- 10aK. Schickedanz, T. Trageser, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Commun. 2015, 51, 15808;
- 10bF. Miyamoto, S. Nakatsuka, K. Yamada, K.-i. Nakayama, T. Hatakeyama, Org. Lett. 2015, 17, 6158;
- 10cT. Katayama, S. Nakatsuka, H. Hirai, N. Yasuda, J. Kumar, T. Kawai, T. Hatakeyama, J. Am. Chem. Soc. 2016, 138, 5210;
- 10dS. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, J. Am. Chem. Soc. 2022, 144, 106;
- 10eD. Volland, J. Niedens, P. T. Geppert, M. J. Wildervanck, F. Full, A. Nowak-Król, Angew. Chem. Int. Ed. 2023, 62, e202304291.
- 11T. Tanaka, Bull. Chem. Soc. Jpn. 2022, 95, 602.
- 12F. Chen, T. Tanaka, Y. Hong, T. Mori, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2017, 56, 14688.
- 13About hetero[n]circulenes;
- 13aT. Hensel, N.N. Anderson, M. Plesner, M. Pittelkow, Synlett 2016, 27, 498;
- 13bY. Miyake, H. Shinokubo, Chem. Commun. 2020, 56, 15605;
- 13cK. Kise, T. Tanaka, Heterocycles 2022, 104, 1373.
- 14Y. Matsuo, K. Kise, Y. Morimoto, A. Osuka, T. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202116789.
- 15Y. Matsuo, A. Osuka, T. Tanaka, Synthesis 2022, 51, 147.
- 16Deposition numbers 2205273 (for 3S2N), 2205276 (for SN′SN′-S), 2205277 (for (SNSN-S)2), 2205272 (for 2S3N), 2205275 (for SN′N′N′-S), and 2205274 (for (SNNN-S)2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 17These pitches are longer than those of calculated structures without the diphenylthiophene linker. This implies that the presence of the linker indeed increases the strain energy. See Figure S7–14 (for monomer) and Figure S7–15 (for dimer) in the Supporting Information.
- 18F. Chen, T. Tanaka, T. Mori, A. Osuka, Chem. Eur. J. 2018, 24, 7489.
- 19Y. Matsuo, F. Chen, K. Kise, T. Tanaka, A. Osuka, Chem. Sci. 2019, 10, 11006.
- 20Because (SNSN-S)2 has two chiral sp3 carbon atoms, the chirality definitions of (R,R) for (P,P)-(SNSN-S)2 and (S,S) for (M,M)-(SNSN-S)2 based on the Cahn-Ingold-Prelog rule can also be adopted.
- 21
- 21aY. Zhou, D. Li, S. Tang, H. Sun, J. Huang, Q. Zhu, Org. Biomol. Chem. 2018, 16, 2039;
- 21bH. Tanaka, N. Ukegawa, M. Uyanik, K. Ishihara, J. Am. Chem. Soc. 2022, 144, 5756;
- 21cY. Zhu, S. Yang, E. Pu, L. Li, S. Ye, L. Wei, G. Ma, Y. Zhang, H. Zhang, J. Chen, Org. Lett. 2023, 25, 3533.
- 22Instead of the addition of NaBH4/MeOH, the reaction can be quenched by passing through an alumina column to afford the product in a similar yield.
- 23NCIPLOT4;
- 23aR. A. Boto, F. Peccati, R. Laplaza, C. Quan, A. Carbone, J.-P. Piquemal, Y. Maday, J. Contreras-García, J. Chem. Theory Comput. 2020, 16, 4150;
- 23bJ. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D.N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625;
- 23cE. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
- 24F. Chen, J. Kim, Y. Matsuo, Y. Hong, D. Kim, T. Tanaka, A. Osuka, Asian J. Org. Chem. 2019, 8, 994.
- 25The aromaticity of the amine-type and imine-type pyrrole segments has been evaluated by NICS(0) and HOMA calculations (Figure S7–11).
- 26In this photoreaction, monomer SNSN-S is thought to be obtained via disproportion reaction of the intermediate radical species. The corresponding diradical species generated by the disproportion reaction is hydrogenated with trace amount of water in the solvent to produce SNSN-S (Figure S7–17). This plausible reaction mechanism is consistent with the experimental result that β-deuterium-labeled monomer was not obtained in the photoreaction in DMSO-d6 in the presence of D2O (Figure S3–24).
- 27Detailed measurement conditions: The compound (SNSN-S)2 was dissolved in THF with a concentration of 6.2×10−6 M and loaded in a normal 1 cm quartz cell. Photoexcitation was carried out with continuous Hg−Xe-lamp (LC8 L9566, Hamamatsu Photonics) collimated by a lens and an iris to a diameter of ca. 5 mm. Only 365 nm i-line was passed through a bandpass filter, and optical power was adjusted to be 600 uW. Emission spectra were simultaneously monitored by a combination of a lens, an optical fiber, spectrograph and EMCCD camera (Andor Kymera 328i and Newton 970P) with the orthogonal configuration of excitation and emission path.
- 28Without bridging units, the racemization activation energies are expected to be reduced (+31.7 kcal/mol for SNSN-S without a linker and +24.5 kcal/mol for SNNN-S without a linker), indicating the importance of closed-helicene-type structure (Figure S9–4, S9–5).