S-Block Potassium Single-atom Electrocatalyst with K−N4 Configuration Derived from K+/Polydopamine for Efficient Oxygen Reduction
Dr. Niankun Guo
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHui Xue
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRui Ren
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jing Sun
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorTianshan Song
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorProf. Dr. Hongliang Dong
Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhonglong Zhao
School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jiangwei Zhang
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qin Wang
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Limin Wu
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorDr. Niankun Guo
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHui Xue
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRui Ren
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jing Sun
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorTianshan Song
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorProf. Dr. Hongliang Dong
Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhonglong Zhao
School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jiangwei Zhang
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qin Wang
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Limin Wu
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 P. R. China
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorGraphical Abstract
An s-block Potassium single-atom catalyst (SAC) with a K-N4 configuration was prepared and used as a highly efficient oxygen reduction reaction (ORR) electrocatalyst. The excellent ORR activity is attributed to K/C atoms acting as dual adsorption sites, which can synergistically optimize the free energy of oxygen-containing intermediates and tune the rate-determining step.
Abstract
Currently, single-atom catalysts (SACs) research mainly focuses on transition metal atoms as active centers. Due to their delocalized s/p-bands, the s-block main group metal elements are typically regarded as catalytically inert. Herein, an s-block potassium SAC (K−N−C) with K-N4 configuration is reported for the first time, which exhibits excellent oxygen reduction reaction (ORR) activity and stability under alkaline conditions. Specifically, the half-wave potential (E1/2) is up to 0.908 V, and negligible changes in E1/2 are observed after 10,000 cycles. In addition, the K−N−C offers an exceptional power density of 158.1 mW cm−2 and remarkable durability up to 420 h in a Zn-air battery. Density functional theory (DFT) simulations show that K−N−C has bifunctional active K and C sites, can optimize the free energy of ORR reaction intermediates, and adjust the rate-determining steps. The crystal orbital Hamilton population (COHP) results showed that the s orbitals of K played a major role in the adsorption of intermediates, which was different from the d orbitals in transition metals. This work significantly guides the rational design and catalytic mechanism research of s-block SACs with high ORR activity.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202312409-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361–369.
- 2M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun, Z. Wang, B. Zhang, L. Song, Y. Yang, C. Ma, Y. Han, W. Huang, Energy Environ. Sci. 2021, 14, 6455–6463.
- 3H. Huang, D. Yu, F. Hu, S.-C. Huang, J. Song, H.-Y. Chen, L. L. Li, S. Peng, Angew. Chem. Int. Ed. 2022, 61, e202116068.
- 4Y. Yan, S. Liang, X. Wang, M. Zhang, S.-M. Hao, X. Cui, Z. Li, Z. Lin, Proc. Natl. Acad. Sci. USA 2021, 118, 2110036118.
- 5M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657.
- 6Y. Yang, Y. Yang, Z. Pei, K.-H. Wu, C. Tan, H. Wang, L. Wei, A. Mahmood, C. Yan, J. Dong, S. Zhao, Y. Chen, Matter 2020, 3, 1442–1476.
- 7Q. H. Yang, C. C. Yang, C. H. Lin, H. L. Jiang, Angew. Chem. Int. Ed. 2019, 58, 3511–3515.
- 8Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615–622.
- 9J. Greeley, J. K. Norskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 2002, 53, 319–348.
- 10V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 2007, 6, 241–247.
- 11B. Y. Xia, H. B. Wu, N. Li, Y. Yan, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 3797–3801.
- 12J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, Nat. Catal. 2018, 1, 935–945.
- 13H. Adabi, A. Shakouri, U. N. Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, W. E. Mustain, Nat. Energy 2021, 6, 834–843.
- 14X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, Y. Shao, Nat. Catal. 2020, 3, 1044–1054.
- 15G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B. A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J. N. Zhang, Nat. Commun. 2021, 12, 1734.
- 16M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 14005–14012.
- 17H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou, Z. Huang, J. Li, S. Jiao, Y. Kuang, S. Luo, Adv. Funct. Mater. 2021, 31, 2011289.
- 18Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219.
- 19Z. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao, Adv. Mater. 2020, 32, 2004670.
- 20B. Hammer, J. K. Norskov, Adv. Catal. 2000, 45, 71–129.
- 21M. A. Legare, G. Belanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science 2018, 359, 896–900.
- 22C. Y. Lin, L. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 2017, 29.1606635.
- 23Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu, Y. Yang, J. Li, F. Gao, K. Yang, S. Liu, P. Jiang, W. Yan, S. Chen, C. Wang, H. Yong, M. Huang, W. Zheng, H. Wang, Q. Chen, Adv. Mater. 2021, 33, 2107103.
- 24S. Liu, Z. D. Li, C. L. Wang, W. W. Tao, M. X. Huang, M. Zuo, Y. Yang, K. Yang, L. J. Zhang, S. Chen, P. P. Xu, Q. W. Chen, Nat. Commun. 2020, 11, 938.
- 25L. Han, H. Cheng, W. Liu, H. Li, P. Ou, R. Lin, H. Wang, C. Pao, A. R. Head, C. Wang, X. Tong, C. Sun, W. Pong, J. Luo, J. Zheng, H. Xin, Nat. Mater. 2022, 21, 681–688.
- 26S. S. Peng, X. B. Shao, M. X. Gu, G. S. Zhang, C. Gu, Y. Nian, Y. Jia, Y. Han, X. Q. Liu, L. B. Sun, Angew. Chem. Int. Ed. 2022, 61, e202215157.
- 27H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang, J. K. Sun, K. Matyjaszewski, M. Antonietti, J. Yuan, Chem. Rev. 2020, 120, 9363–9419.
- 28B. Yu, J. Liu, S. Liu, F. Zhou, Chem. Commun. 2010, 46, 5900–5902.
- 29Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, ACS Energy Lett. 2018, 3, 1183–1191.
- 30Q. Liang, W. Li, L. Xie, Y. He, B. Qiu, H. Zeng, S. Zhou, J. Zeng, T. Liu, M. Yan, K. Liang, O. Terasaki, L. Jiang, B. Kong, Nano Lett. 2022, 22, 2889–2897.
- 31Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang, Y. Lin, T. Yuan, F. Zhou, Y. Hu, Z. Yang, C. Zhao, J. Wang, C. Zhao, Y. Hu, G. Wu, Q. Zhang, Q. Xu, B. Liu, P. Gao, R. You, W. Huang, L. Zheng, L. Gu, Y. Wu, Y. Li, J. Am. Chem. Soc. 2019, 141, 4505–4509.
- 32H. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339–348.
- 33S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang, M. Zuo, Y. Yang, Q. Chen, Adv. Mater. 2021, 33, 2103133.
- 34K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998–1003.
- 35A. Dettlaff, M. Sawczak, E. Klugmann-Radziemska, D. Czylkowski, R. Miotk, M. Wilamowska-Zawłocka, RSC Adv. 2017, 7, 31940–31949.
- 36M. Wu, J. M. Yan, X. N. Tang, M. Zhao, Q. Jiang, ChemSusChem 2014, 7, 2654–2658.
- 37J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2015, 9, 931–940.
- 38Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 2010, 132, 6294–6295.
- 39Y. Guo, T. Chen, Q. Liu, Z. Zhang, X. Fang, J. Phys. Chem. C 2016, 120, 25328–25337.
- 40G. Chen, Y. An, S. Liu, F. Sun, H. Qi, H. Wu, Y. He, P. Liu, R. Shi, J. Zhang, A. Kuc, U. Kaiser, T. Zhang, T. Heine, G. Wu, X. Feng, Energy Environ. Sci. 2022, 15, 2619–2628.
- 41J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886–17892.
- 42V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461–5466.
- 43S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030–1035.