A Bismuth-Based Zeolitic Organic Framework with Coordination-Linked Metal Cages for Efficient Electrocatalytic CO2 Reduction to HCOOH
Prof. Zhiqiang Jiang
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorProf. Minyi Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorXingliang Chen
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorBing Wang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorWenjuan Fan
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorChenhuai Yang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorXiaoju Yang
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Zhicheng Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xuan Yang
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chunsen Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Tianhua Zhou
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorProf. Zhiqiang Jiang
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorProf. Minyi Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorXingliang Chen
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorBing Wang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorWenjuan Fan
Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000 P. R. China
Search for more papers by this authorChenhuai Yang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorXiaoju Yang
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Zhicheng Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xuan Yang
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chunsen Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Tianhua Zhou
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorGraphical Abstract
A ligand-directing strategy is developed to build a bismuth-based zeolitic organic framework (Bi-ZMOFs) with coordination-linked metal cages for efficient electrochemical reduction of CO2 to HCOOH with 91 % efficiency. The coordination of Bi with pyrazole-N atom triggers an effective interatomic electron transfer and contributes to the activation of CO2 and stabilization of the active intermediates.
Abstract
Zeolitic metal–organic frameworks (ZMOFs) have emerged as one of the most promsing catalysts for energy conversion, but they suffer from either weak bonding between metal-organic cubes (MOCs) that decrease their stability during catalysis processes or low activity due to inadequate active sites. In this work, through ligand-directing strategy, we successfully obtain an unprecedented bismuth-based ZMOF (Bi-ZMOF) featuring a ACO topological crystal structure with strong coordination bonding between the Bi-based cages. As a result, it enables efficient reduction of CO2 to formic acid (HCOOH) with Faradaic efficiency as high as 91 %. A combination of in situ surface-enhanced infrared absorption spectroscopy and density functional theory calculation reveals that the Bi−N coordination contributes to facilitating charge transfer from N to Bi atoms, which stabilize the intermediate to boost the reduction efficiency of CO2 to HCOOH. This finding highlights the importance of the coordination environment of metal active sites on electrocatalytic CO2 reduction. We believe that this work will offer a new clue to rationally design zeolitic MOFs for catalytic reaction
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202311223-sup-0001-misc_information.pdf6.8 MB | Supporting Information |
anie202311223-sup-0001-PZH-1+_PZH-2-CIF.cif6.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Grammatico, A. J. Bagnall, L. Riccardi, M. Fontecave, B.-L. Su, L. Billon, Angew. Chem. Int. Ed. 2022, 61, e202206399;
- 1bS. Zhang, Q. Fan, R. Xia, T. J. Meyer, Acc. Chem. Res. 2020, 53, 255–264;
- 1cD.-H. Nam, P. De Luna, A. Rosas-Hernández, A. Thevenon, F. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, E. H. Sargent, Nat. Mater. 2020, 19, 266–276;
- 1dT. Wang, J. Chen, X. Ren, J. Zhang, J. Ding, Y. Liu, K. H. Lim, J. Wang, X. Li, H. Yang, Y. Huang, S. Kawi, B. Liu, Angew. Chem. Int. Ed. 2023, 62, e202211174;
- 1eZ. Zhang, X. Huang, Z. Chen, J. Zhu, B. Endrődi, C. Janáky, D. Deng, Angew. Chem. Int. Ed. 2023, 62, e202302789;
- 1fD. Wei, Y. Wang, C.-L. Dong, Z. Zhang, X. Wang, Y.-C. Huang, Y. Shi, X. Zhao, J. Wang, R. Long, Y. Xiong, F. Dong, M. Li, S. Shen, Angew. Chem. Int. Ed. 2023, 62, e202217369;
- 1gK. A. Sun, K. Yu, J. J. Fang, Z. W. Zhuang, X. Tan, Y. Wu, L. Y. Zeng, Z. B. Zhuang, Y. Pan, C. Chen, Adv. Mater. 2022, 34, 2206478;
- 1hY. Huang, X. N. Mao, G. T. Yuan, D. Zhang, B. B. Pan, J. Deng, Y. R. Shi, N. Han, C. R. Li, L. Zhang, L. Wang, L. He, Y. Y. Li, Y. G. Li, Angew. Chem. Int. Ed. 2021, 60, 15844–15848;
- 1iL. L. Zhuo, P. Chen, K. Zheng, X. W. Zhang, J. X. Wu, D. Y. Lin, S. Y. Liu, Z. S. Wang, J. Y. Liu, D. D. Zhou, J. P. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204967.
- 2J. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188–195.
- 3
- 3aX. Liu, S. Zhang, S. Guo, B. Cai, S. A. Yang, F. Shan, M. Pumera, H. Zeng, Chem. Soc. Rev. 2020, 49, 263–285;
- 3bZ. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai, H. Zhu, ACS Catal. 2016, 6, 6255–6264;
- 3cF. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, M. Mavrikakis, W. Xu, Nat. Commun. 2020, 11, 1088;
- 3dP. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X.-M. Hu, K. Daasbjerg, T. Skrydstrup, N. Lock, Adv. Funct. Mater. 2020, 30, 1910408;
- 3eG. Zeng, Y. He, D.-D. Ma, S. Luo, S. Zhou, C. Cao, X. Li, X.-T. Wu, H.-G. Liao, Q.-L. Zhu, Adv. Funct. Mater. 2022, 32, 2201125;
- 3fL. Yi, J. Chen, P. Shao, J. Huang, X. Peng, J. Li, G. Wang, C. Zhang, Z. Wen, Angew. Chem. Int. Ed. 2020, 59, 20112–20119;
- 3gZ. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng, B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202217569;
- 3hP. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807–10813;
- 3iZ. Gao, M. Hou, Y. Shi, L. Li, Q. Sun, S. Yang, Z. Jiang, W. Yang, Z. Zhang, W. Hu, Chem. Sci. 2023, 14, 6860–6866.
- 4
- 4aN. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320;
- 4bZ. T. Wang, Y. S. Zhou, D. Y. Liu, R. J. Qi, C. F. Xia, M. T. Li, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2022, 61, e202200552;
- 4cL. Lin, X. He, X.-G. Zhang, W. Ma, B. Zhang, D. Wei, S. Xie, Q. Zhang, X. Yi, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202214959.
- 5
- 5aA. Wagner, C. D. Sahm, E. Reisner, Nat. Catal. 2020, 3, 775–786;
- 5bY. Zhang, L. Jiao, W. J. Yang, C. F. Xie, H. L. Jiang, Angew. Chem. Int. Ed. 2021, 60, 7607–7611.
- 6
- 6aJ.-J. Lv, R. Yin, L. Zhou, J. Li, R. Kikas, T. Xu, Z.-J. Wang, H. Jin, X. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202207252;
- 6bZ. Fan, R. Luo, Y. Zhang, B. Zhang, P. Zhai, Y. Zhang, C. Wang, J. Gao, W. Zhou, L. Sun, J. Hou, Angew. Chem. Int. Ed. 2023, 62, e202216326;
- 6cS. G. Han, M. Zhang, Z. H. Fu, L. R. Zheng, D. D. Ma, X. T. Wu, Q. L. Zhu, Adv. Mater. 2022, 34, 2202830;
- 6dX. Y. Cao, L. L. Zhao, B. R. Wulan, D. X. Tan, Q. W. Chen, J. Z. Ma, J. T. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202113918.
- 7
- 7aY. Li, J. Yu, Nat. Rev. Mater. 2021, 6, 1156–1174;
- 7bH. Xu, P. Wu, Nat. Sci. Rev. 2022, 9, nwac045.
- 8B. Shen, H. Wang, H. Xiong, X. Chen, E. G. T. Bosch, I. Lazić, W. Qian, F. Wei, Nature 2022, 607, 703–707.
- 9D. F. Sava, V. C. Kravtsov, J. Eckert, J. F. Eubank, F. Nouar, M. Eddaoudi, J. Am. Chem. Soc. 2009, 131, 10394–10396.
- 10A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58–67.
- 11R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533–3539.
- 12E. P. Gómez-Oliveira, D. Reinares-Fisac, L. M. Aguirre-Díaz, F. Esteban-Betegón, M. Pintado-Sierra, E. Gutiérrez-Puebla, M. Iglesias, M. Ángeles Monge, F. Gándara, Angew. Chem. Int. Ed. 2022, 61, e202209335.
- 13Deposition numbers 2279406 (for PZH-1) and 2279259 (for PZH-2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 14J. Li, A. Corma, J. Yu, Chem. Soc. Rev. 2015, 44, 7112–7127.
- 15Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin, T. Ma, Angew. Chem. Int. Ed. 2021, 60, 12554–12559.
- 16C. Cao, S. Zhou, S. Zuo, H. Zhang, B. Chen, J. Huang, X.-T. Wu, Q. Xu, Q.-L. Zhu, Research 2023, 6, 0079.
- 17M. Sassenburg, M. Kelly, S. Subramanian, W. A. Smith, T. Burdyny, ACS Energy Lett. 2023, 8, 321–331.
- 18
- 18aC. Cao, D.-D. Ma, J.-F. Gu, X. Xie, G. Zeng, X. Li, S.-G. Han, Q.-L. Zhu, X.-T. Wu, Q. Xu, Angew. Chem. Int. Ed. 2020, 59, 15014–15020;
- 18bY. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu, Y. Yu, J. Xiao, B. Zhang, Nat. Commun. 2020, 11, 3415.
- 19
- 19aF. Maseras, K. Morokuma, J. Comput. Chem. 1995, 16, 1170–1179;
- 19bS. Humbel, S. Sieber, K. Morokuma, J. Chem. Phys. 1996, 105, 1959–1967;
- 19cS. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct. 1999, 461–462, 1–21;
- 19dC. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652–1671;
- 19eS. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989–2009.
- 20
- 20aA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 20bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 20cS. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211;
- 20dH. M. Senn, W. Thiel, Angew. Chem. Int. Ed. 2009, 48, 1198–1229;
- 20eE. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, NBO 5.G, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2004); http://www.chem.wisc.edu/~nbo5.
- 21
- 21aJ. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83–89;
- 21bW. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. Nørskov, Surf. Sci. 2011, 605, 1354–1359;
- 21cH. A. Hansen, J. B. Varley, A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett. 2013, 4, 388–392;
- 21dA. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311–1315.
- 22
- 22aJ. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886–17892;
- 22bH. Xie, T. Zhang, R. Xie, Z. Hou, X. Ji, Y. Pang, S. Chen, M.-M. Titirici, H. Weng, G. Chai, Adv. Mater. 2021, 33, 2008373;
- 22cP. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu, G. Zhang, Nanoscale 2019, 11, 7805–7812;
- 22dJ. Fan, X. Zhao, X. Mao, J. Xu, N. Han, H. Yang, B. Pan, Y. Li, L. Wang, Y. Li, Adv. Mater. 2021, 33, 2100910;
- 22eY.-C. He, D.-D. Ma, S.-H. Zhou, M. Zhang, J.-J. Tian, Q.-L. Zhu, Small 2022, 18, 2105246.