Nanomedicine-Enabled Chemical Regulation of Reactive X Species for Versatile Disease Treatments
Xinyue Dai
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Yujie Xie
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
School of Medicine, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Wei Feng
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Yu Chen
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
School of Medicine, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXinyue Dai
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Yujie Xie
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
School of Medicine, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Wei Feng
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Yu Chen
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 China
School of Medicine, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorGraphical Abstract
This minireview provides a summary of the chemistry and mechanisms governing reactive species (RXS) based nanomedicine, focusing on metabolic regulation, the role of nanomedicine in RXS generation and elimination. The challenges and future prospects associated with RXS for disease treatments are further discussed, aiming to facilitate the clinical translation of RXS-based nanomedicine and open new avenues for improved therapeutic interventions.
Abstract
Reactive X species (RXS), encompassing elements such as O, N, C, S, Se, Cl, Br, I, and H, play vital roles in cell biology and physiological function, impacting cellular signal transduction, metabolic regulation, and disease processes. The redox unbalance of RXS is firmly implicated in an assortment of physiological and pathological disorders, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases. However, the intricate nature and multifactorial dependence of RXS pose challenges in comprehending and precisely modulating their biological behavior. Nanomaterials with distinct characteristics and biofunctions offer promising avenues for generating or scavenging RXS to maintain redox homeostasis and advance disease therapy. This minireview provides a tutorial summary of the relevant chemistry and specific mechanisms governing different RXS, focusing on cellular metabolic regulation, stress responses, and the role of nanomedicine in RXS generation and elimination. The challenges associated with chemically regulating RXS for diverse disease treatments are further discussed along with the future prospects, aiming to facilitate the clinical translation of RXS-based nanomedicine and open new avenues for improved therapeutic interventions.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. O. Lundberg, E. Weitzberg, Cell 2022, 185, 2853–2878.
- 2H. Sies, D. P. Jones, Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383.
- 3A. Panday, M. K. Sahoo, D. Osorio, S. Batra, Cell. Mol. Immunol. 2015, 12, 5–23.
- 4J. N. Peoples, A. Saraf, N. Ghazal, T. T. Pham, J. Q. Kwong, Exp. Mol. Med. 2019, 51, 1–13.
- 5F. C. Fang, Nat. Rev. Microbiol. 2004, 2, 820–832.
- 6T. V. Mishanina, M. Libiad, R. Banerjee, Nat. Chem. Biol. 2015, 11, 457–464.
- 7R. Rodriguez, R. Redman, Proc. Natl. Acad. Sci. USA 2005, 102, 3175–3176.
- 8
- 8aS. S. Sabharwal, P. T. Schumacker, Nat. Rev. Cancer 2014, 14, 709–721;
- 8bR. L. Auten, J. M. Davis, Pediatr. Res. 2009, 66, 121–127.
- 9E. C. Cheung, K. H. Vousden, Nat. Rev. Cancer 2022, 22, 280–297.
- 10C. Groth, X. Hu, R. Weber, V. Fleming, P. Altevogt, J. Utikal, V. Umansky, Br. J. Cancer 2019, 120, 16–25.
- 11A. Chow, K. Perica, C. A. Klebanoff, J. D. Wolchok, Nat. Rev. Clin. Oncol. 2022, 19, 775–790.
- 12W. Gao, X. Wang, Y. Zhou, X. Wang, Y. Yu, Signal Transduction Targeted Ther. 2022, 7, 196.
- 13Y. Deng, Y. Wang, F. Jia, W. Liu, D. Zhou, Q. Jin, J. Ji, ACS Nano 2021, 15, 8663–8675.
- 14J. Zhang, X. Hao, W. Sang, Q. Yan, Small 2017, 13, 1701601.
- 15S. Fuloria, V. Subramaniyan, S. Karupiah, U. Kumari, K. Sathasivam, D. U. Meenakshi, Y. S. Wu, R. M. Guad, K. Udupa, N. K. Fuloria, Antioxidants 2020, 9, 1075.
- 16G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587–590.
- 17C. Gorrini, I. S. Harris, T. W. Mak, Nat. Rev. Drug Discovery 2013, 12, 931–947.
- 18D. K. Singh, P. Winocour, K. Farrington, Nat. Rev. Endocrinol. 2011, 7, 176–184.
- 19H. M. Semchyshyn, Sci. World J. 2014, 2014, 417842.
- 20M. T. Lin, M. F. Beal, Nature 2006, 443, 787–795.
- 21A. C. Rego, C. R. Oliveira, Neurochem. Res. 2003, 28, 1563–1574.
- 22J. K. Andersen, Nat. Med. 2004, 10, S18–S25.
- 23
- 23aB. Yang, Y. Chen, J. Shi, Chem. Rev. 2019, 119, 4881–4985;
- 23bD. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579–591.
- 24B. C. Dickinson, C. J. Chang, Nat. Chem. Biol. 2011, 7, 504–511.
- 25C. Zhang, X. Wang, J. Du, Z. Gu, Y. Zhao, Adv. Sci. 2021, 8, 2002797.
- 26J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076.
- 27
- 27aY. Huang, J. Ren, X. Qu, Chem. Rev. 2019, 119, 4357–4412;
- 27bB. Yang, Y. Chen, J. Shi, Adv. Mater. 2019, 31, 1901778.
- 28E. P. Stater, A. Y. Sonay, C. Hart, J. Grimm, Nat. Nanotechnol. 2021, 16, 1180–1194.
- 29A. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81.
- 30Y. Sun, B. Xu, X. Pan, H. Wang, Q. Wu, S. Li, B. Jiang, H. Liu, Coord. Chem. Rev. 2023, 475, 214896.
- 31L. Wang, B. Zhu, Y. Deng, T. Li, Q. Tian, Z. Yuan, L. Ma, C. Cheng, Q. Guo, L. Qiu, Adv. Funct. Mater. 2021, 31, 2101804.
- 32Y.-P. Xiao, P.-H. Chen, S. Lei, F. Bai, L.-H. Fu, J. Lin, P. Huang, Angew. Chem. Int. Ed. 2022, 61, e202204584.
- 33A. B. Cook, P. Decuzzi, ACS Nano 2021, 15, 2068–2098.
- 34Z. Zeng, C. Zhang, J. Li, D. Cui, Y. Jiang, K. Pu, Adv. Mater. 2021, 33, 2007247.
- 35X. Lin, J. Song, X. Chen, H. Yang, Angew. Chem. Int. Ed. 2020, 59, 14212–14233.
- 36C. Zhang, K. Pu, Adv. Mater. 2023, n/a, 2303059.
- 37H. Huang, Z. Wang, L. Chen, H. Yu, Y. Chen, Adv. Healthcare Mater. 2023, 12, 2201607.
- 38C. Xu, J. Huang, Y. Jiang, S. He, C. Zhang, K. Pu, Nat. Biomed. Eng. 2023, 7, 298–312.
- 39X. Wang, X. Dai, Y. Chen, Small 2023, 19, 2301693.
- 40X. Qian, Y. Zheng, Y. Chen, Adv. Mater. 2016, 28, 8097–8129.
- 41J. Li, Y. Luo, K. Pu, Angew. Chem. Int. Ed. 2021, 60, 12682–12705.
- 42Q. Zhang, J. Wu, J. Wang, X. Wang, C. Wu, M. Chen, Q. Wu, M. S. Lesniak, Y. Mi, Y. Cheng, Q. Wang, Angew. Chem. Int. Ed. 2020, 59, 3732–3738.
- 43S. Goldstein, J. Lind, G. Merényi, Chem. Rev. 2005, 105, 2457–2470.
- 44G. Ferrer-Sueta, N. Campolo, M. Trujillo, S. Bartesaghi, S. Carballal, N. Romero, B. Alvarez, R. Radi, Chem. Rev. 2018, 118, 1338–1408.
- 45Y. Hu, T. Lv, Y. Ma, J. Xu, Y. Zhang, Y. Hou, Z. Huang, Y. Ding, Nano Lett. 2019, 19, 2731–2738.
- 46S. Gao, W. Zhang, R. Wang, S. P. Hopkins, J. C. Spagnoli, M. Racin, L. Bai, L. Li, W. Jiang, X. Yang, C. Lee, K. Nagata, E. W. Howerth, H. Handa, J. Xie, Q. Ma, A. Kumar, ACS Nano 2020, 14, 1468–1481.
- 47Q. Feng, Y. Li, N. Wang, Y. Hao, J. Chang, Z. Wang, X. Zhang, Z. Zhang, L. Wang, Small 2020, 16, 2002138.
- 48Y.-C. Sung, P.-R. Jin, L.-A. Chu, F.-F. Hsu, M.-R. Wang, C.-C. Chang, S.-J. Chiou, J. T. Qiu, D.-Y. Gao, C.-C. Lin, Y.-S. Chen, Y.-C. Hsu, J. Wang, F.-N. Wang, P.-L. Yu, A.-S. Chiang, A. Y.-T. Wu, J. J.-S. Ko, C. P.-K. Lai, T.-T. Lu, Y. Chen, Nat. Nanotechnol. 2019, 14, 1160–1169.
- 49N. Liu, J. Zhu, W. Zhu, L. Chen, M. Li, J. Shen, M. Chen, Y. Wu, F. Pan, Z. Deng, Y. Liu, G. Yang, Z. Liu, Q. Chen, Y. Yang, Adv. Mater. 2023, 35, 2302220.
- 50A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem, F. Lemière, P. Cos, S. Dewilde, E. Smits, A. Bogaerts, Adv. Sci. 2019, 6, 1802062.
- 51F. Cao, L. Zhang, Y. You, L. Zheng, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2020, 59, 5108–5115.
- 52D.-Y. Zhang, M. R. Younis, H. Liu, S. Lei, Y. Wan, J. Qu, J. Lin, P. Huang, Biomaterials 2021, 271, 120706.
- 53K. Y. Wang, Y. Zhang, W. P. Mao, W. Feng, S. T. Lu, J. Wan, X. R. Song, Y. Chen, B. Peng, Adv. Funct. Mater. 2022, 32, 2109221.
- 54C. Xu, Y. Pan, H. Zhang, Y. Sun, Y. Cao, P. Qi, M. Li, O. U. Akakuru, L. He, C. Xiao, B. Sun, L. Bian, J. Li, A. Wu, Adv. Healthcare Mater. 2023, n/a, 2300797.
- 55
- 55aX. Mu, J. Wang, H. He, Q. Li, B. Yang, J. Wang, H. Liu, Y. Gao, L. Ouyang, S. Sun, Q. Ren, X. Shi, W. Hao, Q. Fei, J. Yang, L. Li, R. Vest, T. Wyss-Coray, J. Luo, X.-D. Zhang, Sci. Adv. 2021, 7, eabk1210;
- 55bX. Mu, H. He, J. Wang, W. Long, Q. Li, H. Liu, Y. Gao, L. Ouyang, Q. Ren, S. Sun, J. Wang, J. Yang, Q. Liu, Y. Sun, C. Liu, X.-D. Zhang, W. Hu, Nano Lett. 2019, 19, 4527–4534.
- 56Y. Jiang, Y. Kang, J. Liu, S. Yin, Z. Huang, L. Shao, J. Nanobiotechnol. 2022, 20, 265.
- 57D.-Y. Zhang, H. Liu, K. S. Zhu, T. He, M. R. Younis, C. Yang, S. Lei, J. Wu, J. Lin, J. Qu, P. Huang, J. Nanobiotechnol. 2021, 19, 266.
- 58Y. Zhao, T. D. Biggs, M. Xian, Chem. Commun. 2014, 50, 11788–11805.
- 59J. L. Wallace, R. Wang, Nat. Rev. Drug Discovery 2015, 14, 329–345.
- 60M. R. Filipovic, J. Zivanovic, B. Alvarez, R. Banerjee, Chem. Rev. 2018, 118, 1253–1337.
- 61Y. Ma, X. Li, A. Li, P. Yang, C. Zhang, B. Tang, Angew. Chem. Int. Ed. 2017, 56, 13752–13756.
- 62X. Pan, Y. Qi, Z. Du, J. He, S. Yao, W. Lu, K. Ding, M. Zhou, J. Nanobiotechnol. 2021, 19, 392.
- 63Y. Li, W. Chen, Y. Qi, S. Wang, L. Li, W. Li, T. Xie, H. Zhu, Z. Tang, M. Zhou, Small 2020, 16, 2001356.
- 64F. Yu, P. Li, G. Li, G. Zhao, T. Chu, K. Han, J. Am. Chem. Soc. 2011, 133, 11030–11033.
- 65T. D. Newton, S. G. Bolton, A. C. Garcia, J. E. Chouinard, S. L. Golledge, L. N. Zakharov, M. D. Pluth, J. Am. Chem. Soc. 2021, 143, 19542–19550.
- 66X. Kang, H. Huang, C. Jiang, L. Cheng, Y. Sang, X. Cai, Y. Dong, L. Sun, X. Wen, Z. Xi, L. Yi, J. Am. Chem. Soc. 2022, 144, 3957–3967.
- 67Q. Li, R. P. Fernandez, R. Hossaini, F. Iglesias-Suarez, C. A. Cuevas, E. C. Apel, D. E. Kinnison, J.-F. Lamarque, A. Saiz-Lopez, Nat. Commun. 2022, 13, 2768.
- 68M. Zhao, W. Feng, C. Li, W. Xiu, M. Li, S. Liu, L. Wang, W. Huang, Q. Zhao, Biomater. Sci. 2020, 8, 7145–7153.
- 69S. Thangudu, S. S. Kulkarni, R. Vankayala, C.-S. Chiang, K. C. Hwang, Nanoscale 2020, 12, 12970–12984.
- 70R. Song, H. Wang, M. Zhang, Y. Liu, X. Meng, S. Zhai, C.-c. Wang, T. Gong, Y. Wu, X. Jiang, W. Bu, Angew. Chem. Int. Ed. 2020, 59, 21032–21040.
- 71Y. You, Y.-X. Zhu, J. Jiang, Z. Chen, C. Wu, Z. Zhang, H. Lin, J. Shi, J. Am. Chem. Soc. 2023, 145, 13249–13260.
- 72Y. Tang, Y. Ma, J. Yin, W. Lin, Chem. Soc. Rev. 2019, 48, 4036–4048.
- 73K. Wang, J. Li, Y. Yi, B. Lv, Y. Wu, C. Wang, H. Li, Y. Li, Y. Liu, X. Cai, X. Meng, X. Jiang, X. Zheng, Z. Zhou, W. Bu, Nano Today 2022, 42, 101355.
- 74S. S. Davies, L. S. Zhang, Curr. Pharmacol. Rep. 2017, 3, 51–67.
- 75J. Sun, X. Cai, C. Wang, K. Du, W. Chen, F. Feng, S. Wang, J. Am. Chem. Soc. 2021, 143, 868–878.
- 76J. Peng, K. Du, J. Sun, X. Yang, X. Wang, X. Zhang, G. Song, F. Feng, Angew. Chem. Int. Ed. 2023, 62, e202214991.