A Single-Crystal Monomer to Single-Crystal Polymer Reaction Activated by a Triplet Excimer in a Zipper Mechanism
Lanxin Long
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Samara Medina Rivero
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
These authors contributed equally to this work.
Search for more papers by this authorFanxi Sun
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorProf. Dongsheng Wang
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorDr. Dimitri Chekulaev
Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
Search for more papers by this authorCorresponding Author
Prof. Claire Tonnelé
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
Search for more papers by this authorProf. David Casanova
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
Ikerbasque Foundation for Science, 48009 Bilbao, Euskadi, Spain
Search for more papers by this authorCorresponding Author
Prof. Juan Casado
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Yonghao Zheng
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorLanxin Long
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Samara Medina Rivero
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
These authors contributed equally to this work.
Search for more papers by this authorFanxi Sun
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorProf. Dongsheng Wang
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorDr. Dimitri Chekulaev
Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
Search for more papers by this authorCorresponding Author
Prof. Claire Tonnelé
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
Search for more papers by this authorProf. David Casanova
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
Ikerbasque Foundation for Science, 48009 Bilbao, Euskadi, Spain
Search for more papers by this authorCorresponding Author
Prof. Juan Casado
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Yonghao Zheng
Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072 Chengdu, P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
A combined experimental and theoretical study focused on the elucidation of the polymerization mechanism of the crystal monomer to crystal polymer reaction of a bisindenedione compound in the solid state. The experimental description and characterization of the polymer product have been reported elsewhere and, in this article, we address the first detailed description of the polymerization process. This reaction pathway consists of the initial formation of a triplet excimer state that relaxes to an intermolecularly bonded triplet state that is the starting point of the propagation step of the polymerization. The overall process can be visualized in the monomer starting state as an open zipper in which a cursor or slider is formed by light absorption and the whole zipper is then closed by propagation of the cursor. To this end, variable-temperature electron spin resonance (ESR), femtosecond transient absorption spectroscopy, and vibrational Raman spectroscopic data have been implemented in combination with quantum chemical calculations. The presented mechanistic insight is of great value to understand the intricacies of such an important reaction and to envisage and diversify the products produced thereof.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308780-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Lotz, T. Miyoshi, S. Z. D. Cheng, Macromolecules 2017, 50, 5995–6025.
- 2C. Lee, C. O. Osuji, ACS Macro Lett. 2021, 10, 945–957.
- 3K. Biradha, R. Santra, Chem. Soc. Rev. 2013, 42, 950–967.
- 4S. Wang, S. Yuan, K. Wang, W. Chen, K. Yamada, D. Barkley, T. Koga, Y. I. Hong, T. Miyoshi, Macromolecules 2019, 52, 4739–4748.
- 5G. Allegra, A. Famulari, Polymer 2009, 50, 1819–1829.
- 6C. Luo, J. U. Sommer, ACS Macro Lett. 2013, 2, 31–34.
- 7C. Luo, J. U. Sommer, ACS Macro Lett. 2016, 5, 30–34.
- 8X. Ouyang, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2003, 125, 12400–12401.
- 9M. Kawano, M. Fujita, Coord. Chem. Rev. 2007, 251, 2592–2605.
- 10J. W. Lauher, F. W. Fowler, N. S. Goroff, Acc. Chem. Res. 2008, 41, 1215–1229.
- 11I. Halasz, Cryst. Growth Des. 2010, 10, 2817–2823.
- 12J. P. Zhang, P. Q. Liao, H. L. Zhou, R. B. Lin, X. M. Che, Chem. Soc. Rev. 2014, 43, 5789–5814.
- 13J. J. Vittal, H. S. Quah, Coord. Chem. Rev. 2017, 342, 1–18.
- 14X. P. Wang, W. M. Chen, H. Qi, X. Y. Li, C. Rajnak, Z. Y. Feng, M. Kurmoo, R. Boca, C. J. Jia, C. H. Tung, D. Sun, Chem. Eur. J. 2017, 23, 7990–7996.
- 15Z. Li, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2009, 131, 634–643.
- 16B. P. Krishnan, K. M. Sureshan, J. Am. Chem. Soc. 2015, 137, 1692–1696.
- 17B. B. Rath, J. J. Vittal, J. Am. Chem. Soc. 2020, 142, 20117–20123.
- 18H. A. Al-Mohsin, A. AlMousa, S. A. Oladepo, A. S. Jalilov, M. Fettouhi, A. M. P. Peedikakkal, Inorg. Chem. 2019, 58, 10167–10173.
- 19M. Hasegawa, Y. Suzuki, J. Polym. Sci. Part B 1967, 5, 813–815.
- 20G. Wegner, Z. Naturforsch. B 1969, 24, 824–832.
- 21R. H. Baughman, J. Appl. Phys. 1972, 43, 4362–4370.
- 22P. Zhu, W. Gu, L. Z. Zhang, X. Liu, J. L. Tian, S. P. Yan, Eur. J. Inorg. Chem. 2008, 2971–2974.
- 23V. I. Ovcharenko, S. V. Fokin, E. T. Kostina, G. V. Romanenko, A. S. Bogomyakov, E. V. Tretyakov, Inorg. Chem. 2012, 51, 12188–12194.
- 24W. L. Xu, M. D. Smith, J. A. Krause, A. B. Greytak, S. Ma, C. M. Read, L. S. Shimizu, Cryst. Growth Des. 2014, 14, 993–1002.
- 25K. Honda, F. Nakanishi, N. Feeder, J. Am. Chem. Soc. 1999, 121, 8246–8250.
- 26G. Wegner, Makromol. Chem. 1984, 6, 347–357.
- 27R. C. Nieuwendaal, S. J. Mattler, M. Bertmer, S. E. Hayes, J. Phys. Chem. B 2011, 115, 5785–5793.
- 28P. Kissel, D. J. Murray, W. J. Wulftange, V. J. Catalano, B. T. King, Nat. Chem. 2014, 6, 774–778.
- 29L. Dou, Y. Zheng, X. Shen, G. Wu, K. Fields, W. Hsu, H. Zhou, Y. Yang, F. Wudl, 2014, BIT-Ac2, The Cambridge Crystallographic Data Centre, CCDC#976926.
- 30L. Dou, Y. Zheng, X. Shen, G. Wu, K. Fields, W. Hsu, H. Zhou, Y. Yang, F. Wudl, 2014, BIT-Hep2, The Cambridge Crystallographic Data Centre, CCDC#976928.
- 31L. Dou, Y. Zheng, X. Shen, G. Wu, K. Fields, W. Hsu, H. Zhou, Y. Yang, F. Wudl, Science 2014, 343, 272–277.
- 32M. Servalli, M. Solar, N. Trapp, M. Wörle, A. D. Schlüter, Cryst. Growth Des. 2017, 17, 6510–6522.
- 33R. Samanta, S. Ghosh, R. Devarapalli, C. M. Reddy, Chem. Mater. 2018, 30, 577–581.
- 34S. Islam, J. Datta, S. Maity, B. Dutta, S. Khan, P. Ghosh, P. P. Ray, M. H. Mir, Cryst. Growth Des. 2019, 19, 4057–4062.
- 35Q. H. Guo, M. Jia, Z. Liu, Y. Qiu, H. Chen, D. Shen, X. Zhang, Q. Tu, M. R. Ryder, H. Chen, P. Li, Y. Xu, P. Li, Z. Chen, G. S. Shekhawat, V. P. Dravid, R. Q. Snurr, D. Philp, A. C. Sue, O. K. Farha, M. Rolandi, J. F. Stoddart, J. Am. Chem. Soc. 2020, 142, 6180–6187.
- 36R. Mandal, A. Garai, S. Peli, P. K. Datta, K. Biradha, Chemistry 2020, 26, 396–400.
- 37P. Yang, Y. Song, W. Feng, W. Zhang, Macromolecules 2018, 51, 7052–7060.
- 38H. Ito, M. Muromoto, S. Kurenuma, S. Ishizaka, N. Kitamura, H. Sato, T. Seki, Nat. Commun. 2013, 4, 2009.
- 39G. Liu, J. Liu, Y. Liu, X. Tao, J. Am. Chem. Soc. 2014, 136, 590–593.
- 40H. Chung, C. Ruzié, Y. Geerts, Y. Diao, Cryst. Growth Des. 2018, 18, 4245–4251.
- 41G. Hofer, F. Grieder, M. Kröger, A. D. Schlüter, T. Weber, J. Appl. Crystallogr. 2018, 51, 481–497.
- 42X. Luo, Z. Wei, B. Seo, Q. Hu, X. Wang, J. A. Romo, M. Jain, M. Cakmak, B. W. Boudouris, K. Zhao, J. Mei, B. M. Savoie, L. Dou, J. Am. Chem. Soc. 2022, 144, 16588–16597.
- 43Z. Wei, X. Wang, B. Seo, X. Luo, Q. Hu, J. Jones, M Zeller, K. Wang, B. M. Savoie, K. Zhao, L. Dou, Angew. Chem. Int. Ed. 2022, 61, e202213840.
- 44K. O. Johansson, M. P. Head-Gordon, P. E. Schrader, K. R. Wilson, H. A. Michelsen, Science 2018, 361, 997–1000.
- 45S. Richert, C. E. Tait, C. R. Timmel, J. Magn. Reson. 2017, 280, 103–116.
- 46F. Plasser, J. Chem. Phys. 2020, 152, 084108.