Porous Cyclodextrin Polymer Enables Dendrite-Free and Ultra-Long Life Solid-State Zn-I2 Batteries
Yang Su
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorXinlu Wang
Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorMinghang Zhang
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorHuimin Guo
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorProf. Haizhu Sun
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorGang Huang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dongtao Liu
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorYang Su
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorXinlu Wang
Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorMinghang Zhang
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorHuimin Guo
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorProf. Haizhu Sun
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorGang Huang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dongtao Liu
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Zn-I2 batteries have attracted attention due to their low cost, safety, and environmental friendliness. However, their performance is still limited by the irreversible growth of Zn dendrites, hydrogen evolution reactions, corrosion, and shuttle effect of polyiodide. In this work, we have prepared a new porous polymer (CD-Si) by nucleophilic reaction of β-cyclodextrin with SiCl4, and CD-Si is applied to the solid polymer electrolyte (denoted PEO/PVDF/CD-Si) to solve above-mentioned problems. Through the anchoring of the CD-Si, a conductive network with dual transmission channels was successfully constructed. Due to the non-covalent anchoring effect, the ionic conductivity of the solid polymer electrolytes (SPE) can reach 1.64×10−3 S cm−1 at 25 °C. The assembled symmetrical batteries can achieve highly reversible dendrite-free galvanizing/stripping (stable cycling for 7500 h at 5 mA cm−2 and 1200 h at 20 mA cm−2). The solid-state Zn-I2 battery shows an ultra-long life of over 35,000 cycles at 2 A g−1. Molecular dynamics simulations are performed to elucidate the working mechanism of CD-Si in the polymer matrix. This work provides a novel strategy towards solid electrolytes for Zn-I2 batteries.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308182-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Hou, Y. Gao, H. Tan, B. Zhang, Nat. Commun. 2021, 12, 3083.
- 2L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X.-Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902–910.
- 3B. Raza, Y. Zhang, J. Chen, U. Shamraiz, Y. Zhang, A. Naveed, J. Wang, Angew. Chem. Int. Ed. 2023, 62, e202302174.
- 4Z. Li, Y.-W. Yang, Adv. Mater. 2022, 34, 2107401.
- 5H. Zhang, X. Gan, Z. Song, J. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202217833.
- 6M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma, J. Zhang, J. Am. Chem. Soc. 2022, 144, 21683–21691.
- 7L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng, M. Ling, M. Fan, T. Ma, Carbon 2022, 187, 145–152.
- 8L. Yan, S. Zhang, Q. Kang, X. Meng, Z. Li, T. Liu, T. Ma, Z. Lin, Energy Storage Mater. 2023, 54, 339–365.
- 9S.-J. Zhang, J. Hao, H. Li, P.-F. Zhang, Z.-W. Yin, Y.-Y. Li, B. Zhang, Z. Lin, S.-Z. Qiao, Adv. Mater. 2022, 34, 2201716.
- 10K. Sonigara, J. Zhao, K. Machhi, G. Cui, S. Soni, Adv. Energy Mater. 2020, 10, 2001997.
- 11Y. Kang, G. Chen, H. Hua, M. Zhang, J. Yang, P. Lin, H. Yang, Z. Lv, Q. Wu, J. Zhao, Y. Yang, Angew. Chem. Int. Ed. 2023, 62, e202300418.
- 12Y. He, M. Liu, S. Chen, J. Zhang, Sci. China Chem. 2022, 65, 391–398.
- 13H. Peng, Y. Fang, J. Wang, P. Ruan, Y. Tang, B. Lu, X. Cao, S. Liang, J. Zhou, Matter 2022, 5, 4363–4378.
- 14Y. Yang, S. Liang, B. Lu, J. Zhou, Energy Environ. Sci. 2022, 15, 1192.
- 15Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.
- 16X. Li, M. Li, Z. Huang, G. Liang, Z. Chen, Q. Yang, Q. Huang, C. Zhi, Energy Environ. Sci. 2021, 14, 407–413.
- 17L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 19292–19296.
- 18Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 2021, 12, 6606.
- 19Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1903675.
- 20J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, Energy Environ. Sci. 2016, 9, 663–670.
- 21Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma, Z. Huang, G. Liang, A. Chen, Y. Guo, B. Dong, X. Huang, C. Yang, C. Zhi, Energy Environ. Sci. 2021, 14, 3492–3501.
- 22Z. Chen, T. Wang, Y. Hou, Y. Wang, Z. Huang, H. Cui, J. Fan, Z. Pei, C. Zhi, Adv. Mater. 2022, 34, 2207682.
- 23H. Dong, J. Li, S. Zhao, F. Zhao, S. Xiong, J. L. Brett, G. He, P. Parkin, J. Mater. Chem. A 2020, 8, 22637–22644.
- 24H. Dou, M. Xu, Y. Zheng, Z. Li, G. Wen, Z. Zhang, L. Yang, Q. Ma, A. Yu, D. Luo, X. Wang, Z. Chen, Adv. Mater. 2022, 34, 2110585.
- 25W. Li, K. Wang, K. Jiang, J. Mater. Chem. A 2020, 8, 3785–3794.
- 26L. Chai, X. Wang, Y. Hu, X. Li, S. Huang, J. Pan, J. Qian, X. Sun, Adv. Sci. 2022, 9, 2105063.
- 27X. Xing, Y. Li, S. Wang, H. Liu, Z. Wu, S. Yu, J. Holoubek, H. Zhou, P. Liu, ACS Energy Lett. 2021, 6, 1831–1838.
- 28C. Bai, F. Cai, L. Wang, S. Guo, X. Liu, Z. Yuan, Nano Res. 2018, 11, 3548–3554.
- 29Z. Cheng, H. Pan, F. Li, C. Duan, H. Liu, H. Zhong, C. Sheng, G. Hou, P. He, H. Zhou, Nat. Commun. 2022, 13, 125.
- 30P. Fan, H. Liu, V. Marosz, T. Samuels, L. Suib, L. Sun, L. Liao, Adv. Funct. Mater. 2021, 31, 2101380.
- 31Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu, F. Pan, Nano Energy 2019, 56, 92–99.
- 32L. Ma, S. Chen, X. Li, A. Chen, B. Dong, C. Zhi, Angew. Chem. Int. Ed. 2020, 59, 23836–23844.
- 33F. Bu, C. Li, Q. Wang, X. Liu, Chem. Eng. J. 2022, 449, 137710.
- 34A. Alsbaiee, J. Smith, L. Xiao, Y. Ling, E. Helbling, R. Dichtel, Nature 2016, 529, 190–194.
- 35Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J. Zhou, X. Ma, X. Feng, B. Wang, Angew. Chem. Int. Ed. 2017, 56, 16313–16317.
- 36Z. Jiang, R. Dong, M. Evans, N. Biere, A. Ebrahim, S. Li, D. Anselmetti, R. Dichtel, G. Livingston, Nature 2022, 609, 58–64.
- 37A. Giri, A. Sahoo, T. Dutta, A. Patra, ACS Omega 2020, 5, 28413–28424.
- 38X. Yao, P. Huang, Z. Nie, Prog. Polym. Sci. 2019, 93, 1–35.
- 39P. Li, M. Liao, S. Cui, J. Li, L. Ye, Y. Yang, C. Wang, B. Wang, H. Peng, Angew. Chem. Int. Ed. 2023, 62, e202300705.
- 40J. Klemes, Y. Ling, C. Ching, C. Wu, L. Xiao, E. Helbling, R. Dichtel, Angew. Chem. Int. Ed. 2019, 58, 12049–12053.
- 41D. Kim, H. Kim, J.-Y. Chang, Small 2020, 16, 1907555.
- 42Z. Xu, S. Jia, W. Wang, Z. Yuan, B. Ravoo, D.-S. Guo, Nat. Chem. 2019, 11, 86–93.
- 43L. Xiao, Y. Ling, A. Alsbaiee, C. Li, E. Helbling, R. Dichtel, J. Am. Chem. Soc. 2017, 139, 7689–7692.
- 44J. Seo, G.-H. Lee, J. Hur, M.-C. Sung, J.-H. Seo, D.-W. Kim, Adv. Energy Mater. 2021, 11, 2102583.
- 45Y. Su, X. Rong, A. Gao, Y. Liu, J. Li, M. Mao, X. Qi, G. Cha, Q. Zhang, L. Suo, L. Gu, H. Li, X. Huang, L. Chen, B. Liu, Y.-S. Hu, Nat. Commun. 2022, 13, 4181.
- 46L. Imholt, D. Dong, D. Bedrov, I. C, M. W, G. Brunklaus, ACS Macro Lett. 2018, 7, 881–885.
- 47J. Zhang, P. X. Ma, Adv. Drug Delivery Rev. 2013, 65, 1215–1233.
- 48M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2007, 129, 14452–14457.
- 49X.-B. Fu, L.-Y. Yang, J.-Q. Ma, G. Yang, Y.-Feng Yao, Q. Chen, Polymer 2016, 105, 310–317.
- 50Y. Kobayashi, Y. Nakamitsu, Y. Zheng, Y. Takashima, H. Yamaguchi, A. Harada, Chem. Commun. 2018, 54, 7066–7069.
- 51S. Karan, T. Sahu, M. Sahu, Y. K. Mahipal, R. C. Agrawal, Ionics 2017, 23, 2721–2726.
- 52S. P. C. Murali, A. S. Samuel, J. Appl. Polym. Sci. 2019, 136, 47654.
- 53C. M. Prasanna, A. Suthanthiraraj, J. Polym. Res. 2016, 23, 140.
- 54A. Nancy, A. Suthanthiraraj, Ionics 2016, 22, 2399–2408.
- 55J. Liu, Z. Khanam, R. Muchakayala, S. Song, J. Mater. Sci. Mater. Electron. 2020, 31, 6160–6173.
- 56L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang, J. Zapien, S. Chen, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 1908121.
- 57H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 2100186.
- 58H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. Int. Ed. 2020, 59, 9377–9381.
- 59J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.
- 60L. Hieu, S. So, I. Kim, J. Hur, Chem. Eng. J. 2021, 411, 128584.
- 61J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, Adv. Mater. 2020, 32, 2003021.
- 62P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. Ree, Adv. Sci. 2021, 8, 2100309.
- 63P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu, Y. Tan, P. Li, J. Yan, K. Liu, Chem. Eng. J. 2021, 403, 126425.
- 64P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.
- 65H. Du, R. Zhao, Y. Yang, Z. Liu, L. Qie, Y. Huang, Angew. Chem. Int. Ed. 2022, 61, e202114789.
- 66Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li, M. Zhu, J. Fan, Q. Dai, M. Zhang, L. Dai, C. Zhi, Adv. Energy Mater. 2018, 8, 1802288.
- 67M. Zhang, P. Yu, K. Xiong, Y. Wang, Y. Liu, Y. Liang, Adv. Mater. 2022, 34, 2200860.